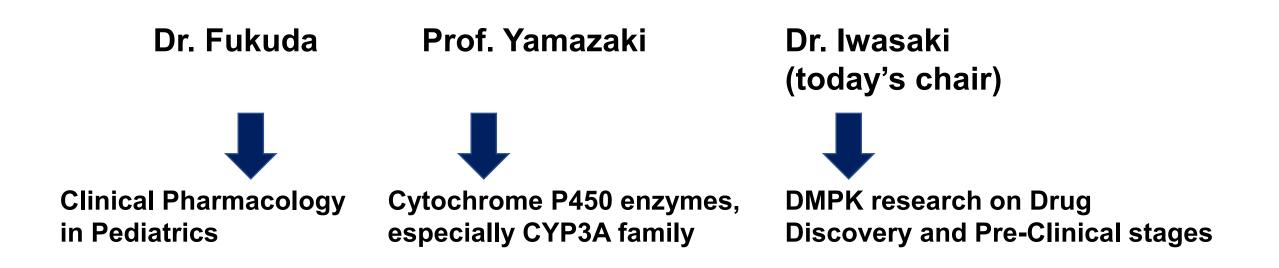
JSSX Award for Young Scientists

(The Japanese Society for the Study of Xenobiotics Award for Young Scientists)


Studies on human pharmacokinetic predictions to accelerate drug development and understand inter-patient variabilities in clinical settings

Chie Emoto, Ph.D. Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University Translational Research Div., Chugai Pharmaceutical Co., Ltd

36th JSSX Annual Meeting COI disclosure information

Chie Emoto is an employee of Chugai Pharmaceutical Co. Ltd., but is working outside the subject area of the presentation.

Acknowledgments: introduction of outstanding mentors

肖像権保護のため、写真は削除いたしました

Acknowledgments

The following list of mentors and collaborators with their affiliations at that time

Pfizer Japan Inc.

Showa Pharmaceutical University

Global Research and Development,

Cincinnati Children's Hospital Medical Center University of Cincinnati College of Medicine

Hiroshi Yamazaki Makiko Shimizu Norie Murayama Yusuke Kamiya All students in Yamazaki's lab

Kanazawa University

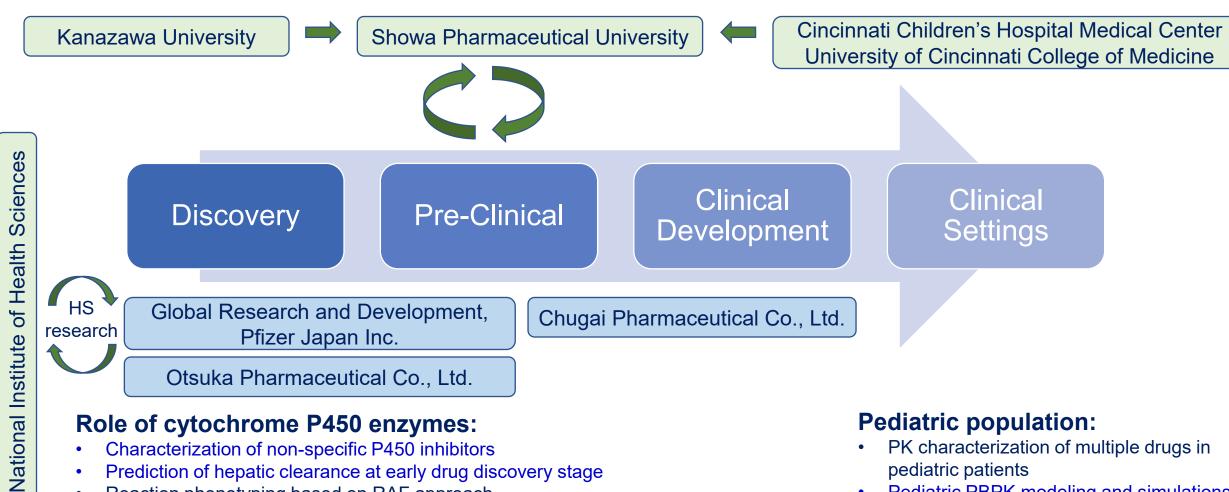
Tsuyoshi Yokoi Miki Nakajima All students in Yokoi's lab

Otsuka Pharmaceutical Co., Ltd. *DMPK*

Eiji Kashiyama Ken Umehara Yukihiro Hirao Noriaki Yoda Satoshi Kondo All DMPK colleagues *Formulation* Masaaki Miyake *Pharmacology* Shoichi Date Satoru Nakazato DMPK Kazuhide Iwasaki Yasuhiro Yamato Shigeo Murase Yasufusa Sawada All DMPK colleagues Discovery Chemistry Hiroyuki Nishida Drug Safety Yasushi Sato DMPK, Sandwich site, UK Barry C. Jones **Ruth Hyland** DMPK, Groton site, CT Scott Obach **National Institute of Health Sciences Yoshiro Saito** Kyoko Maekawa Shin Nippon Biomedical Laboratories, Ltd. Yasuhiro Uno

Tsuyoshi Fukuda Shareen Cox David Hahn Min Dong Joshua C. Euteneuer (NICU) Brooks T. McPhail Takaaki Yamada (Kyushu Univ. Hospital) Raja Venkatasubramanian (Anesthesia) Senthil Sadhasivam (Anesthesia) All Clinical Pharmacology colleagues

Simcyp, UK (Certara) Trevor N. Johnson Sibylle Neuhoff


The University of Manchester Amin Rostami-Hodjegan

Chugai Pharmaceutical Co. Ltd.

Kimio Terao Satofumi Iida All DMPK and Clinical Pharmacology colleagues

ありがとうございました

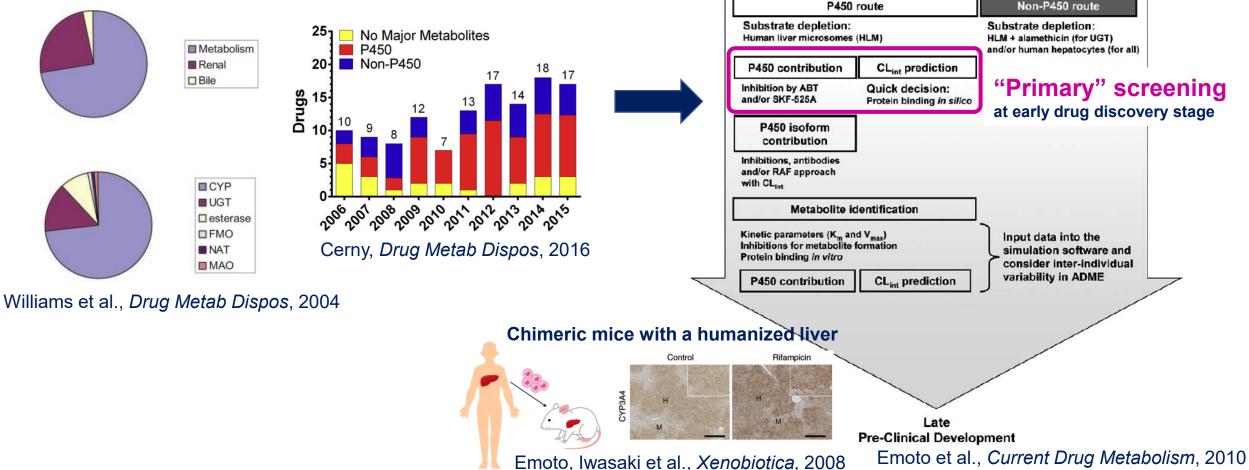
Research Areas Covered in Both Academia and Pharma

Role of cytochrome P450 enzymes:

- Characterization of non-specific P450 inhibitors •
- Prediction of hepatic clearance at early drug discovery stage
- Reaction phenotyping based on RAF approach •
- Evaluation system for induction of CYP3A4 using chimeric mice with a humanized liver •
- Functional characterization of CYP3A4.16 •
- Novel drug reaction mediated by CYP3A4 and CYP3A5 •
- Species differences in P450s between cynomolgus monkeys and humans ٠
- Evaluation of intestinal metabolism and absorption using the Ussing chamber system, etc. •

Pediatric population:

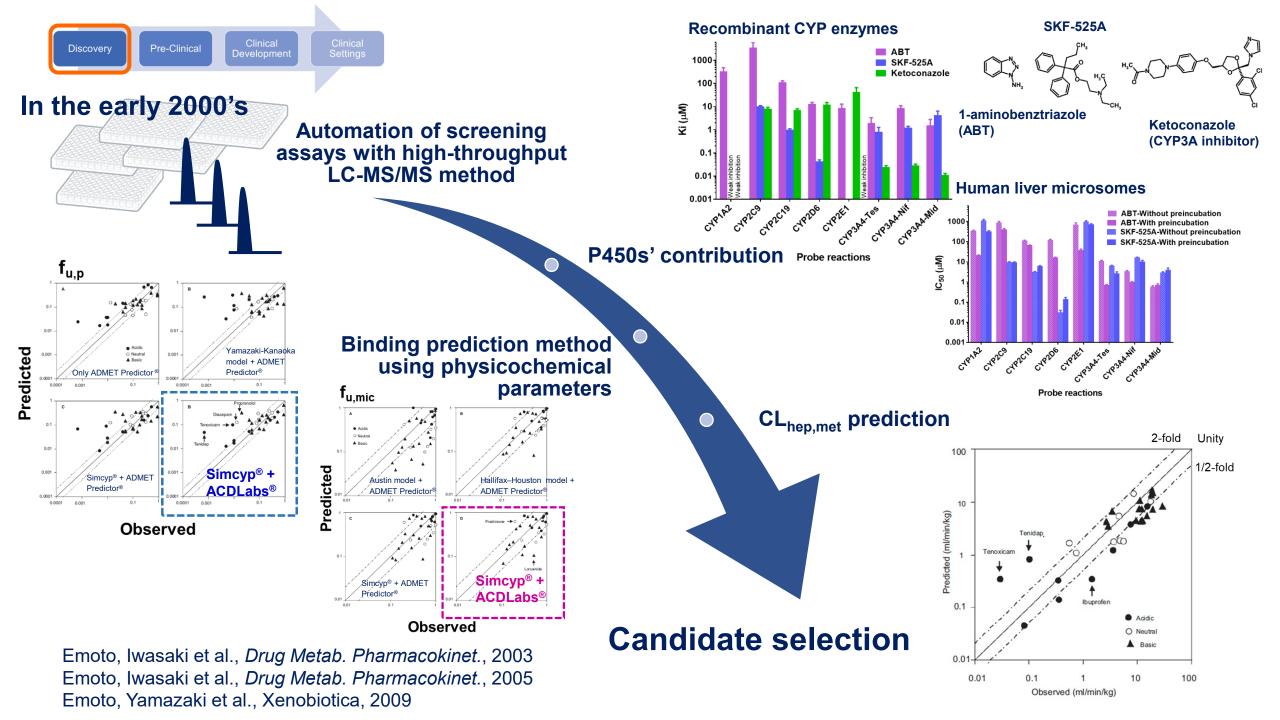
- PK characterization of multiple drugs in pediatric patients
- Pediatric PBPK modeling and simulations of multiple drugs for pediatric populations
- Ontogeny study of OCT1 transporter
- Pharmacogenomic study of OCT1 and MRP3, etc.


Today's topics highlighted in blue

Early Drug Discovery Stage:

Establishing standard methodologies on quick decision

Methodologies for Investigating Drug Metabolism at the Early Drug Discovery Stage: Prediction of Hepatic Drug Clearance and P450 Contribution

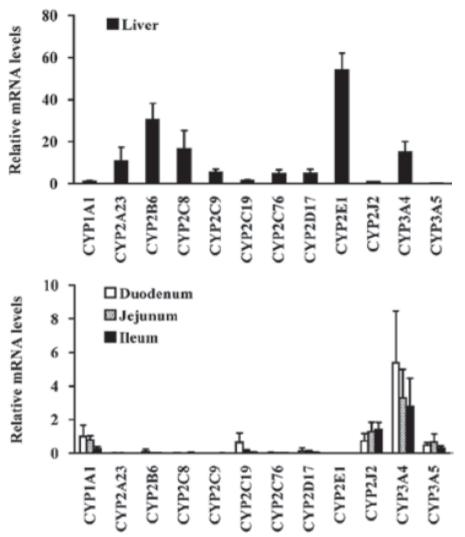

Current Drug Metabolism, 2010 Chie Emoto¹, Norie Murayama¹, Amin Rostami-Hodjegan² and Hiroshi Yamazaki^{1,3,*}

Early Discovery

Metabolic instability (CL_{int} estimation)

Pre-Clinical Stage:

Characterizing hepatic and intestinal P450s in monkeys


Homology of P450 enzymes between cynomolgus monkeys and humans

Cynomolgus	Human	cDNA identity (%)	AA identity (%)	Cynomolgus	Human	cDNA identity (%)	AA identity (%)
CYP1A1	CYP1A1	95	94	CYP2C18	CYP2C18	96	96
CYP1A2	CYP1A	95	93	CYP2C19	CYP2C9	95	93
CYP2A23	CYP2A6	95	92		CYP2C19	94	92
	CYP2A7	93	89	CYP2C76	CYP2C8	74	70
	CYP2A13	95	94		CYP2C9	77	71
CYP2A24	CYP2A6	96	95		CYP2C18	78	72
	CYP2A7	95	94		CYP2C19	76	72
	CYP2A13	95	94	CYP2D17	CYP2D6	94	93
CYP2A26	CYP2A6	94	93	CYP2D44	CYP2D6	93	91
	CYP2A7	94	91	CYP2E1	CYP2E1	95	94
	CYP2A13	94	93	CYP2J2	CYP2J2	95	95
CYP2B6	CYP2B6	94	91	CYP3A4	CYP3A4	95	94
CYP2C8	CYP2C8	95	92	CYP3A5	CYP3A5	94	91
CYP2C9	CYP2C9	94	93	CYP3A43	CYP3A43	97	97
	CYP2C19	93	91				

Emoto, Yoda, Uno, Iwasaki, Kashiyama, Yamazaki et al., Current Drug Metabolism, 2013

Pre-Clinical Stage: Characterizing hepatic and intestinal P450s in monkeys

CYP isoform Expression (mRNA)

Diclofenac hydroxylation as an example

Microsomes	Parameter	Cynomolgus	Human
Liver	Κ _m (μΜ)	$\textbf{77.3} \pm \textbf{7.0}$	6.3-7.1
	V _{max} (pmol/min/mg)	111 ± 7	83.0-137
	CL_{int} (μL/min/mg)	1.43	13.2-19.4
With Sulfaphenazole	IC₅₀ (μΜ)	>50	0.25 - 1.5
Intestine	Κ _m (μΜ)	77.8 ± 2.9	1.7-8.2
	V _{max} (pmol/min/mg)	349 ± 4	1160-3500
	CL_{int} (μL/min/mg)	4.49	215-1200
With Sulfaphenazole	IC₅₀ (μM)	$\textbf{22.5} \pm \textbf{4.4}$	-

Clinical Development

Pre-Clinical

Yoda, Emoto, Kashiyama et al., *Xenobiotica*, 2012 Emoto, Yoda, Iwasaki, Kashiyama, Yamazaki et al., *Current Drug Metabolism*, 2013

Clinical Setting: Target to Neonates Implementing ontogeny & PGx into a PBPK model

V1

Large inter-patient **Research strategy:** Develop a quantitative PBPK model of morphine in neonates **PK** variability Step 5 Step 1 Step 2 Step 3 Step 4 1000 Source data: **OCT1-genotyped Reported PK data: OCT1-genotyped** OCT1-genotyped Morphine conc Descriptive PK Reported PK data children (N= 146) NICU patients **NICU** patients PopPK/Bayesian 100 **Neonates** Individual Neonate Neonates and infants Healthy Older children (full-term, genotyped) (full-term) (full-term) volunteers (6-16 years) Morphine Morphine Morphine Morphine Morphine 10 -20 30 10 40 0 Time (min) **Ontogeny** of OCT1 **Ontogeny** of OCT1 Construction of a Pediatric physiology **Ontogeny** of OCT1 and UGT2B7 and PGx of OCT1 and its genotypes foundational and its genotypes Fukuda et al., model Pharmacogenomics, 2013 **OCT1 mediated transport** Individual patient inf. Model development + PGx + Ontogeny Proof of Concept Passive diffusion Blood OCT1 Hepatocyte Emoto, Fukuda et al., CPT: Pharmacometrics & Systems Pharmacology, 2017 UGT2B7 Emoto, Fukuda et al., CPT: Pharmacometrics & Systems Pharmacology, 2018 Morphine Morphi

Hahn, Emoto, Fukuda et al., Clinical Pharmacology & Therapeutics, 2019

Emoto, Fukuda et al., Clinical Pharmacology & Therapeutics, 2020 Emoto, Fukuda et al, Japanese Journal of Clinical Pharmacology and Therapeutics, 2020

Clinical Setting: Target to Neonates Implementing ontogeny & PGx into a PBPK model

Bars: Mean ± SD ⊖: Individual data

11-24 months

8-12 years

Adult PK data

Step 3Developmental changes in morphine clearance predicted by
PBPK modeling implementing ontogeny of OCT1 and UGT2B7

Discovery

Pre-Clinica

150 -Pediatric PK data Allometrically-scaled morphine PBPK model-predicted CL 0 125 Observed CL (L/h/70kg) Individual CL estimates Agreement • Anand et al. 100 Lvnn and Slatterv • Fukuda et al. Drug data Genetics **Population CL estimates** clearance 75-**Physiological parameters** Bouwmeester et al. Adults to Children • Knibbe et al. PBPK model • Anand et al. 50 -Averaged CL data **OCT1** ontogeny McRorie et al. 0 • Murthy et al. 25 ***p*<0.01 • Hoskin et al. ***p*<0.01 ***p*<0.01 ***p*<0.01 2.0 ***p*<0.01 ***p*<0.01 OCT1/GAPDH (Arbitrary units) ***p*<0.01 ***p*<0.01 0.01 0.1 8 10121416 Adults 6 Age (years) Emoto, Fukuda et al., CPT Pharmacometrics Syst Pharmacol., 2018

Hahn, Emoto, Fukuda et al., *Drug Metab Dispos*, 2017

Discovery stage

Established prediction method of P450 contribution and hepatic clearance using primary screening data and in-silico physicochemical parameters.

Pre-clinical stage

Identified species differences in hepatic and intestinal P450 enzymes between cynomolgus monkeys and humans

Clinical Development

New challenges connecting dots not only for smooth transition of DD process but also for informing clinic of optimal treatment options after approval

Clinical settings

Utilized pediatric PBPK model of morphine implementing ontogeny profiles of UGT2B7 and OCT1 to understand mechanistic insights to large variability in neonates and small infants