The 34th Annual Meeting of JSSX in Tsukuba Kitagawa memorial Award

Promotion of investigations for drug discovery & development using pharmacokinetic modeling & simulation

「Pharmacokinetic modeling & simulationを活用した創薬・開発研究の推進」

Motohiro Kato, Ph.D

Research History

Res	earch His	tory		PR	
1987 1990 1991 1995 1997	Erythropoetin G-CSF	Hiroshima Univ. Chugai PK/PD for EPO and G-CSF Univ. of Tokyo		Prof. Sugiyama's monthly seminar (since 1998)	
1998		Mechanism based inhibition Human clearance prediction CYP induction		DDI Intestinal metabolism CYP induction	
2005	Young scient	ist award PK/PD for tofogliflozin and anti-c drugs Transcellular transport Pharmacokinetics of antibody	ancer	Intestinal inhibition P-gp kinetics Virtual clinical trial	
2014	tofogliflozin	2016 Dr. Yamaguchi Young scientist award	2017 I	017 Dr. Tachibana oung scientist award 2	
2019	E	Early Retirement 2019 Dr. Haraya Young scientist award	roung		

Major research since 2005

1. CYP inhibition

2. CYP induction

- 3. Human prediction using CYP3A tgm and monkey
- 4. PK/PD for tofogliflozin and anti-cancer drugs
- 5. Transcellular transport
- 6. Elimination mechanism of antibody in CSF
- 7. Intestinal metabolism(inhibition, nonlinear kinetics)
- 8. Inter-individual difference for pharmacokinetics (PKPD seminar)

Modeling & Simulation is a powerful tool.

Static model Dynamic model simple, 1 - 3 parameters complex, many parameters

Static model (DDI guideline (Japan))

CYP inhibition

$$R = 1 + \frac{[I]}{Ki}$$

Competitive inhibition

Tim dependent inhibition(mechanism based inhibition)

$$R = \frac{(k_{obs} + k_{deg})}{k_{deg}} \qquad k_{obs} = k_{inact} \times [I]/(K_I + [I]) \qquad 2013$$
$$R = \frac{(k_{obs} + k_{deg})}{k_{deg}} \qquad k_{obs} = k_{inact} \times (50 \times [I])/(K_I + (50 \times [I])) \qquad 2018$$

CYP induction

$$R = \frac{1}{\left(1 + \frac{d \times E_{max}}{EC_{50} + [I]}\right)}$$
$$R = \frac{1}{\left(1 + \frac{d \times 10 \times E_{max}}{EC_{50} + 10 \times [I]}\right)}$$

2013

2018

CYP inhibition

Increase of AUC mediated by CYP inhibition

(Kato etal. Pharm Res 25: 1891-1901, 2008)

CYP inhibition

Competitive inhibition reversible inhibition

Mechanism-based inhibition(Time dependent inhibition) irreversible inhibition

Fluorometric enzyme inhibition assay including TDI evaluation 96-well microtiter plates

Shift assay

Concentration and time-dependent inhibition of BFC dealkylation activity

Sekiguchi N etal., Drug Metab Pharmacokinet 24:500–510, 2009

Model for mechanism based inhibition

At steady state

Estimation of k_{inact}

Assumption

An Inhibior concentration does not change. IC50(-) equal to Ki,app.

$$k_{inact} = \frac{\left(1 + \frac{IC_{50(-)}}{IC_{50(+)}}\right)}{t} \cdot ln\left(\frac{2}{\left(1 + \frac{IC_{50(+)}}{IC_{50(-)}}\right)}\right)$$

Prediction of the change in AUC was calculated using equation 10. The line represents the 1:1 correlation. Sekiguchi N etal., Drug Metab Pharmacokinet 24:500–510, 2009

CYP3A4

Best poster award 2004

Sekiguchi N etal., Drug Metab Pharmacokinet 24:500–510,³2009

Mechanism-based inhibition by Mibefradil in rats

Sekiguchi et al.: Xenobiotica 38: 368-381, 2008

Estimation of MBI parameters

Inactivation parameters of mibefradil on midazolam metabolism in rrCYP3A2, rrCYP2C11, and rat liver microsomes

)
fm=0.891
3
0
fm = 0.100
111-0.109
6
7

Sekiguchi etal. Drug Metab Dispos 39:1255–1262, 2011

15

Physiological model of the time profiles of midazolam and mibefradil concentrations

parameter		value	
hysiological p	arameters of rat		
body weight		250	g
$\mathbf{V}_{\mathbf{h}}$		0.011	L
V_{pv}		0.000275	L
$\mathbf{Q}_{\mathbf{h}}$		0.882	L/h
EO		5	nmol/g live
k _{deg}		0.03	h^{-1}
Midazolam			
dose		2500	μ g
Fa*Fg		1	
$f_{u,S}$		0.04	
K _{p,S}		1	
CL _{int,S}		802.7	L/h
k _{a,S}		5.679	h^{-1}
V _{sys,S}		0.9448	L
Mibefradil			
dose		1500	μ g
		3000	μ g
Fa*Fg		1	
$f_{u,I}$		0.035	
$K_{p,I}$		1	
$CL_{int,I}$	6mg/kg dosed	75.64	L/h
	12mg/kg dosed	49.35	L/h
$\mathbf{k}_{\mathrm{a,I}}$	6mg/kg dosed	0.1740	h^{-1}
	12mg/kg dosed	0.1648	h^{-1}
$V_{sys,I}$	6mg/kg dosed	3.811	L
	12mg/kg dosed	3.546	L
k _{inact}		9.71	h ⁻¹
K _{Lapp}		130	μ g/L
-,«PP			U

¹⁶ Sekiguchi etal. Drug Metab Dispos 39:1255–1262, 2011

Predicted and observed concentrations of midazolam in rats

Sekiguchi etal. Drug Metab Dispos 39:1255–1262, 2011

CYP induction

CYP induction

Kato M etal., Drug Metab Pharmacokinet 20:236–243,¹⁹2005

Model for CYP induction

$$\frac{dE_{act}}{dt} = \frac{Emax \cdot Iu}{EC50 + Iu} + k_{deg} \cdot E_0 - k_{deg} \cdot E_{act}$$

At steady state

$$\frac{E_{act}}{E_0} = 1 + \frac{Emax \cdot Iss, u}{EC50 + Iss, u} = \frac{AUC(control)}{AUC(inducer)}$$

Relative factor approach

Α

Fold induction

Kaneko A etal. Xenobiotica 39:803–810, 2009 Kuramoto S etal. Drug Metab Dispos 45:1139–1145, 2017

Risk assessment

Kuramoto S etal. Drug Metab Dispos 45:1139–1145, 2017

Risk assessment of CYP2C9

Endo-Tsukude C etal., Drug Metab Pharmacokinet 34:325–333, 2019 23

Static model

Dynamic model

Inhibition

G **High Risk** Low Risk 7 Positive Negative In vivo induction ratio 6 5 4 3 2 XX AP 1 6.62 0.312 0 0.1 100 1000 0.01 1 10 $RF_{RIF} \times C_{ss,u}$ (nM)

Inhibition

Sekiguchi N etal., Drug Metab Pharmacokinet 24:500–510, 2009 Sekiguchi etal. Drug Metab Dispos 39:1255–1262, 2011 Kuramoto S etal. Drug Metab Dispos 45:1139–1145, 2017

Acknowledgements

RIKEN

Prof. Yuichi Sugiyama

Musashino Univ.

Prof. Kiyomi Ito

Toho Univ.

Prof. Shoji Miyauchi

Chugai Pharmaceutical Co., Ltd.

Sekiguchi N, Higashida A, Kaneko A, Kuramoto S, Uchimura T, Yoshino-Hishino A, Ozeki K, Takada M, Ayabe M,Tsutsui H, Mitsui T, Ogawa K, Morita K, Miyake T, Saitoh R, Nagayasu M, Takanashi K, Yamaguchi K, Sakurai Y, Noguchi Y, Tachibana T, Haraya K, Aso Y, Ishigai M

PKPD seminar members