

## 非臨床における抗体薬物動態評価の効率化及び 体内動態を改善した改変抗体の創出に関する研究

Optimization of preclinical PK evaluation of therapeutic antibodies and discovery of novel engineered antibodies with improved PK properties

> Kenta Haraya Ph.D. Research Division Chugai Pharmaceutical Co., Ltd. Dec. 11, 2019

### Acknowledgement

Gotemba laboratory (2008-2013, 2017-present)

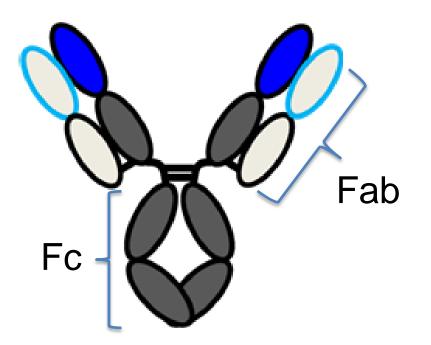


- Motohiro Kato
- Masaki Ishigai
- Yuki Iwayanagi
- Masahiko Nanami
- Atsuhiko Maeda
- Kazuhisa Ozeki
- Mika Sakurai
- Takehisa Kitazawa
- Ryoichi Saito
- Mitsuyasu Tabo

- Tatsuhiko Tachibana
- Junichi Nezu
- Zenjiro Sampei
- Taku Fukuzawa
- Yoshinao Ruike
- Meiri Shida-Kawazoe
- Yuichiro Shimizu
- Tomoyuki Igawa



1


## Chugai Pharmabody Research in Singapore (2013-2017)



- Lam Runyi Adeline
- Siok Wan Gan
- Ho Adrian
- Ng Doris
- Chew Pauline
- Koh Siew Lee
- Lopez Kirsten
- Ang Yan Shan
- Gan Siew Pey
- Tee Kai Sin
- Chen Weina
- Neoh Kar Yee
- Ng Joscelyn

# Structural and pharmacokinetic features of therapeutic monoclonal antibody





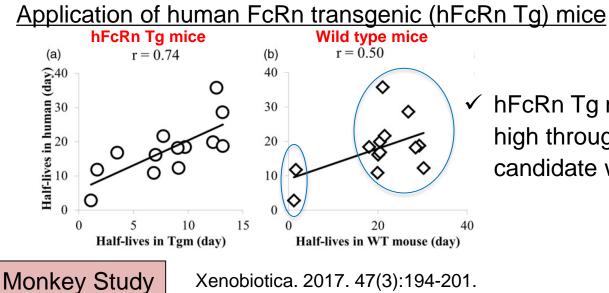
Neonatal Fc receptor (FcRn) Endosome Lysosome

Fab : Binding to target antigenFc : Binding to Fc receptors and C1q

Long half-life due to FcRn mediated endosomal recycling : 5 - 25 days

## Issues in therapeutic antibody development




- 1. Frequent use of cynomolgus monkeys for PK evaluation
  - Inter-species difference of FcRn binding
  - Similar binding to human and cynomolgus monkey FcRn
  - Stronger binding of therapeutic antibody to mouse FcRn compared to human FcRn
- ✓ Use human FcRn transgenic mice for rodent PK evaluation
- Estimate CL and s.c. bioavailability (F) without i.v. data in cynomolgus monkeys, reducing the number of cynomolgus monkeys used
- Establish more accurate method of predicting human PK using monkeys to maximize the value of monkey studies

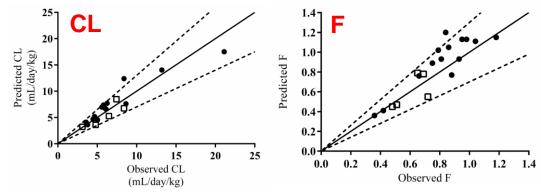
## Optimization of preclinical in vivo study



Mouse Study

Xenobiotica. 2014. 44(12):1127-34.



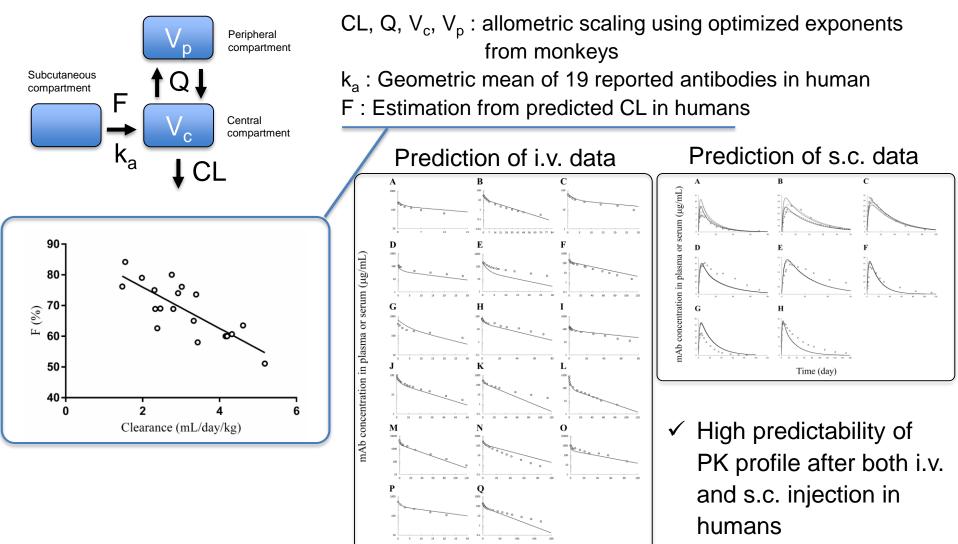

hFcRn Tg mice can be used as in vivo high throughput animal to select candidate with better PK property

Xenobiotica. 2017. 47(3):194-201.

#### Estimating CL and F with only s.c. data in cynomolgus monkeys

#### Strategy

- Fix Q (18.9 mL/day/kg), V1 (40.3 1. mL/kg), V2 (45.1 mL/kg) by geometric mean of reported 23 antibodies
- Fit CL and F using PK profile after s.c. 2. injection




✓ No need for i.v. data to estimate CL and F in cynomolgus monkeys

# Human PK profile prediction after i.v. and s.c. injection from cynomolgus monkeys



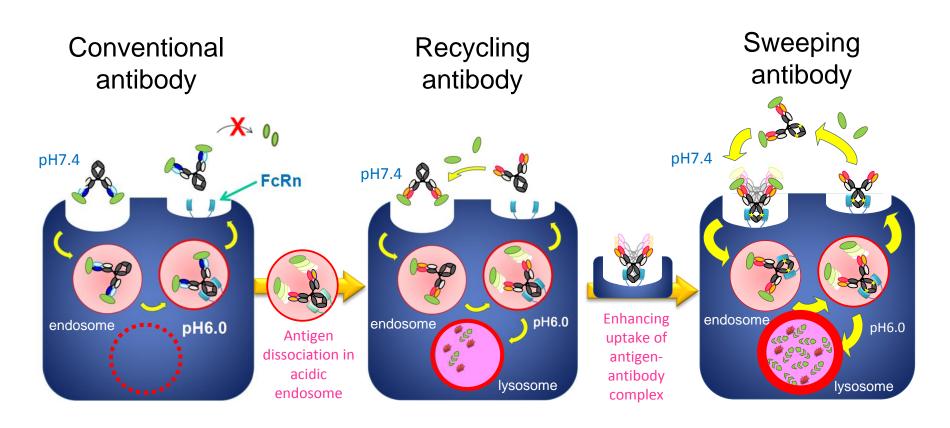
2 compartment model with s.c. compartment



Time (day)

Drug Metab Pharmacokinet. 2017. 32(4):208-217.

## Issues in therapeutic antibody development

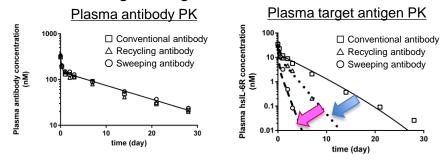



2. Severe competition in development of therapeutic antibodies

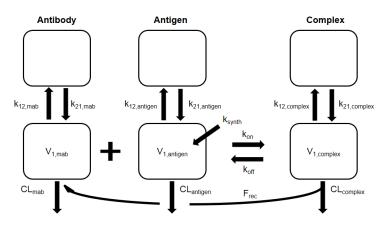
- Global high sales of several therapeutic antibodies
- Generalization of antibody generation methodology
- Limited target antigens in extracellular space
- Differentiate by developing novel antibody engineering technologies (recycling antibody and sweeping antibody)
- Efficiently select targets for novel antibodies using mechanistic PKPD analysis
- ✓ Generation of subcutaneously injectable anti-complement C5 recycling antibody, SKY59/Crovalimab

## **Recycling antibody and sweeping antibody**



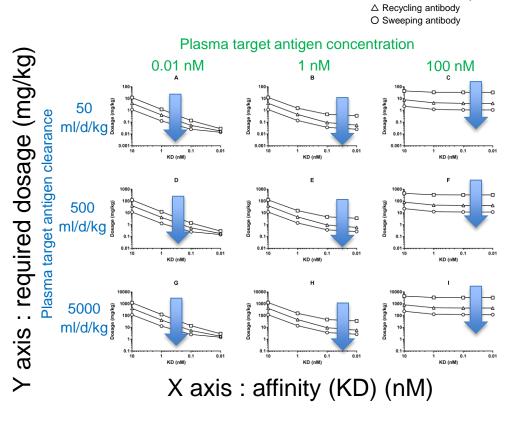



Drug Metab Pharmacokinet. 2019. 34(1):25-41. Immunol Rev. 2016. 270(1):132-51. PLoS One. 2013. 8(5):e63236. INNOVATION BEYOND IMAGINATION


#### Target antigen selection by target mediated drug disposition (TMDD) model based PKPD analysis Roche Roche Group

### hFcRn Tg mice PKPD study

Intravenous injection of mixture of antibody (conventional, recycling, sweeping antibodies) and soluble target antigen




### TMDD model with recycling mechanism



Drug Metab Pharmacokinet. 2016. 31(2):123-32.

#### Simulation of required dosage to achieve 90% neutralization for 1 month for different antigen



Antigen with high plasma concentration are  $\checkmark$ more efficacious targets for recycling and sweeping antibody

CHUGAI

□ Conventional antibody

## Generation of SKY59/Crovalimab, pH dependent anti-complement C5 recycling antibody

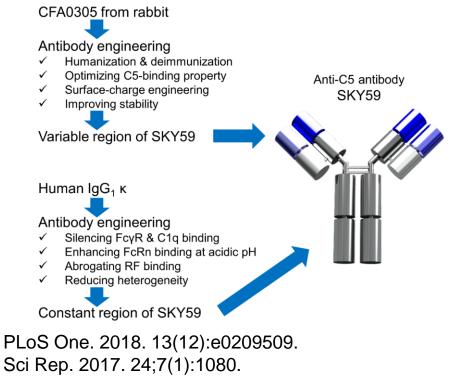
20

-20

60

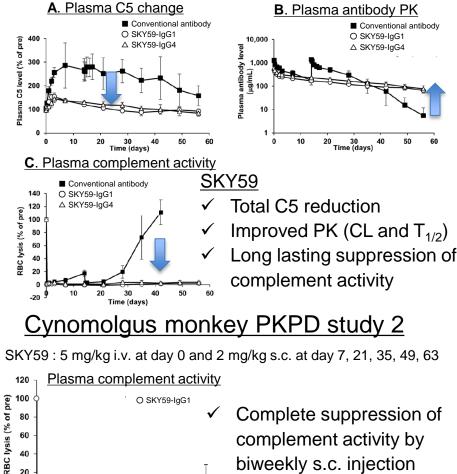
Time (days)

80


100



- High plasma C5 concentration: about 400 nM
- Conventional anti-C5 antibody (Eculizumab) requires high dosage (900-1200mg) and frequent i.v. injection (Q2W) in clinic.


Utilization of recycling antibody technology to generate subcutaneous injectable anti-C5 antibody.

#### <u>Generation of anti-C5 recycling antibody</u>



#### Cynomolgus monkey PKPD study 1

Conventional antibody: 40 mg/kg i.v. at day 0 and 14 SKY59: 20 mg/kg i.v. at day 0



biweekly s.c. injection

CHUGAI

Roche Group

Roche

## Summary



Optimization of preclinical PK evaluation

- Use of hFcRn Tg mice for PK evaluation
- Estimation of F and CL without i.v. data in cynomolgus monkeys
- Accurate method of predicting human PK using cynomolgus monkeys

Discovery of novel engineered antibodies (recycling antibody and sweeping antibody)

- Selection of target antigens using TMDD-based PKPD analysis
- Generation of SKY59/Crovalimab, a subcutaneously injectable anti-complement C5 recycling antibody

Innovation all for the patients



CHUGAI PHARMACEUTICAL CO., LTD.

(Roche) A member of the Roche group