Elucidation of Novel Functions of Non-CYP Enzymes to Promote Understanding of Drug Toxicity and Pharmacokinectis

医薬品毒性および動態理解を目指したnon-CYP 薬物代謝酵素の新規機能解明

> Tatsuki Fukami Drug Metabolism and Toxicity Kanazawa University

Contribution of Enzymes to Drug Metabolism

Cerny, *Drug Metab Dispos* 44: 1246-1252 (2016)

New chemical entities that are not metabolized by P450 are recently desired.

Contribution of non-P450 to drug metabolism tends to increase.

Non-P450 enzymes are receiving attention.

Unknown Non-CYP Enzymes

Many drugs containing ester or amide bonds are hydrolyzed by CES. However, some drugs were likely to be hydrolyzed by enzyme(s) other than CES in human liver.

OH

OH

Acyl-glucuronides possess ester bond. Because acyl-glucuronides are suggested to cause several toxicities, the enzyme(s) catalyzing their hydrolysis may attenuate their toxicities.

Some drugs containing nitro groups are metabolized to amino metabolites, but the responsible enzyme(s) had been unclear.

Η,

Hydrolase Activities of Various Drugs by Purified CES1 and CES2

Substrates	CES1			CES2		
	Km	Vmax	Vmax/Km	Km	Vmax	Vmax/Km
Ester-type drugs						
Camostat mesilate	0.707	0.958	1.356	2.700	0.090	0.015
Dilazep	0.154	0.122	0.727	0.089	0.119	1.326
Irinotecan	1.453	0.082	0.056	0.241	0.074	0.307
ONO-5046	1.060	0.132	0.125	2.080	0.476	0.229
Banazepril	0.734	0.886	1.207	0.785	0.330	0.420
Cilazapril	1.295	2.168	1.674	1.349	0.667	0.494
Quinapril	0.134	0.184	1.373	0.122	0.034	0.279
Temocapril	0.786	4.762	6.059	0.325	0.402	1.237
Delapril	1.502	1.569	1.045	-		
Imidapril	0.287	0.195	1.679	-		
Alacepril	-			-		
Aspirin	-			2.270	0.244	0.107
Procaine	-			3.330	0.029	0.009
Oxybutinin	-			1.124	0.358	0.319
Diltiazem	-			-		
Flavoxate	-			-		
Proniverine	-			-		

Imidapril

Takai et al., Biol Pharm Bull, 20: 869-873, 1997.

Hydrolase Activities of Various Drugs by Purified CES1 and CES2

Substrates -	CES1			CES2		
	<i>K</i> m	Vmax	Vmax/Km	Km	Vmax	Vmax/Km
Amide-type drugs						
Aniracetam	0.085	0.009	0.106	0.301	0.020	0.066
to anisic acid	0.095	0.007	0.074	0.412	0.349	0.847
to anisamidobutyric acid	-	-	-	-	-	-
Capsaicin	-	-	-	-	-	-
Captopril	-	-	-	-	-	-
Flutamide	-	-	-	-	-	-
Fominoben	-	-	-	-	-	-
Indomethacin	-	-	-	-	-	-
Lisinopril	-	-	-	-	-	-
Nefiracetam	-	-	-	-	-	-
Phenacetin	-	-	-	-	-	-
Phenobarbital	-	-	-	-	-	-
Pranlukast	-	-	-	-	-	-
Prazosin	-	-	-	-	-	-
Procainamide	-	-	-	-	-	-
Sultopride	-	-	-	-	-	-
Tiaramide	-	-	-	-	-	-
Endogenous substance						
Acetyl coenzyme A	-	-	-	-	-	-

Takai et al., *Biol Pharm Bull*, 20: 869-873, 1997.

Serine Hydrolases Expressed in Human Liver Microsomes

Metabolic Pathways of Phenacetin

Metabolic Pathways of Phenacetin

Metabolism of Phenacetin by AADAC and CYP Triggers Methemoglobinemia

AADAC and CYPs are Involved in Methemoglobinemia Caused by Phenacetin

Kobayashi et al., Biochem. Pharmacol., 84: 1196-1206, 2012.

Substrate specificity of CES1, CES2, and AADAC

Metabolic Pathway of KC

Cytotoxicity Induced by KC or DAK in HepaRG Cells

Fukami et al., *Biochem Pharmacol*, 116: 153-161, 2016.

Cytotoxicity Induced by KC or DAK in HepaRG Cells

Acyl Glucuronide Formed from Drugs Containing A Carboxylic Acid Moiety

Toxicity of Drugs Containing A Carboxylic Acid Moiety

Drug	Toxicity
Diclofenac	Anaphylaxis, liver injury, SJS
Furosemide	Neutropenia, Thrombocytopenia
Ibuprofen	Anaphylaxis, SJS
Mefenamic acid	Anaphylaxis, SJS
Naproxen	Anaphylaxis, SJS
Probenecid	Anaphylaxis
Tolmetin	Anaphylaxis, liver injury, SJS

MPA-AG Formation and Hydrolysis in Human Liver Homogenates

MPA-AG Hydrolysis in Human Liver Preparations

Data are the mean \pm SD (n = 3). ****P* < 0.001. HLM: Human liver microsomes HLC: Human liver cytosol HLH: Human liver homogenates

Purification of Enzyme(s) Responsible for MPA-AG Hydrolysis from Human Liver Cytosol (kDa)

MW: Molecular weight standard HLC: Human liver cytosol (10 µg)

- 1: Ammonium sulfate (50 70%) precipitation fraction (10 µg)
- 2: CM Sepharose fraction (5.0 µg)
- 3: Mono P fraction (2.0 µg)
- 4: Superdex 200 fraction (1.0 µg)

MPA-AG Hydrolase Activity by Recombinant ABHD10

ABHD10 : α/β Hydrolase Domain Containing 10

- In human, 19 ABHD genes have been identified, but their functions are largely unknown.
- This is the first report for the role of ABHD enzyme in drug metabolism.

Data are the mean \pm SD (n = 3).

MPA Acyl Glucuronidation in Human Liver Homogenates is Affected by Inhibitor of ABHD10

ABHD10 Catalyzes Hydrolysis of Acyl Glucuronides in Human Liver

Diclofenac-AG

Tolmetin-AG

Probenecid-AG

Ito et al., Drug Metab Dispos, 42: 2109-16, 2014.

Iwamura et al., *J Biol Chem*, 287: 9240-9, 2012.

Reduction of Nitroaromatic Drugs

Nitrazepam

- ... is widely used as a hypnotic agent.
- ... rarely causes liver injury and teratogenicity.

Takeno et al., *Toxicol Appl Phalmacol*, 1993. Andrade et al., *Curr Drug Metab*, 2009. Mizuno et al., *Drug Metab Dispos*, 2009.

NZP Reductase Activity in Human Liver

Protein Purification for NZP Reductase

Lane 1, HLC

Lane 2, 40-60% Ammonium sulfate precipitated fraction

Lane 3, CM Sepharose fraction

Lane 4, DEAE Sephacel fraction

Western Blotting for AOX1

Lane 1, HLC

Lane 2, 40-60% Ammonium sulfate precipitated fraction

Lane 3, CM Sepharose fraction

Lane 4, DEAE Sephacel fraction

Kinetic Analyses of NZP Reduction by HLC in Presence of MNA

NZP concentration (µM)

Nitro Reduction via Hydroxylamine

Metabolic Pathway of Nitrazepam in Human

Konishi et al., Biochem Pharmacol, 140: 150-160, 2017.

The balance of metabolism would affect the sensitivity of the toxicities.

Reduction of Nitroaromatic Drugs

The reduction of nitroaromatic drugs by AOX1 would be of toxicological significance.

Unknown Non-CYP Enzymes

Many drug containing ester or amide bonds are hydrolyzed by CES. However, some drugs were likely to be hydrolyzed by enzyme(s) other than CES in human liver.

Acyl-glucuronides possess ester bond. Because acyl-glucuronides are suggested to cause several toxicities, the enzyme(s) catalyzing their hydrolysis may attenuate their toxicities.

Some drugs containing nitro groups are metabolized to amino metabolites, but the responsible enzyme(s) had been unclear.

Acknowledgement

Nagoya Univ. Prof. Tsuyoshi Yokoi

Kanazawa Univ. Prof. Miki Nakajima

Akinobu Watanabe Akinori Nakajima Yuki Kobayashi Mai Shimizu Azumi Iida Takaya Kurokawa Takayuki Amano Keigo Konishi Takuo Ogiso

Fukami and Yokoi. The emerging role of human esterases. Drug Metab. Pharmacokinet., 27: 466-477, 2012.

Oda, Fukami, Yokoi, and Nakajima. A comprehensive review of UDPglucuronosyltransferase and esterases for drug development. Drug Metab. Pharmacokinet., 30:30-51, 2015.