創薬貢献:北川賞 受賞講演

A Pursuit of New Drug Discovery and Development

- 新薬創製の夢を追って -

BRAIZON THERAPEUTICS, Inc. Masato Chiba, Ph.D.


Introduction - My Overall Profile

Director for Pre-clinical Drug Metabolism at Banyu (MSD) Research Institute (2000-2009), and the facility acquired by Taiho Pharmaceutical Company (2009), Head of Pharmacokinetics Research Laboratories (- June, 2018).

Two Products which I was in the development at Merck

Regimen for the other HIV PIs were also OUTRAGEOUS at that time:

- Saquinavir (Fortovase®);
 1200 mg, three times a day.
- Ritonavir (Norvir®);
 600 mg, twice daily.

Project was started (in 1994) to discover and optimize the follow-on candidate for HIV protease inhibitor with gentler regimen (fewer frequency of dosing with less dosage) by simultaneous assessments of metabolic stability, metabolic "soft" spot and P450 (CYP3A) inhibition potency (for the first time at Merck Research Laboratories then).

In the revolutionary times for the change of DMPK roles

Jiunn H. Lin, Ph.D Senior Director, Non-clinical DMPK MRL, Merck

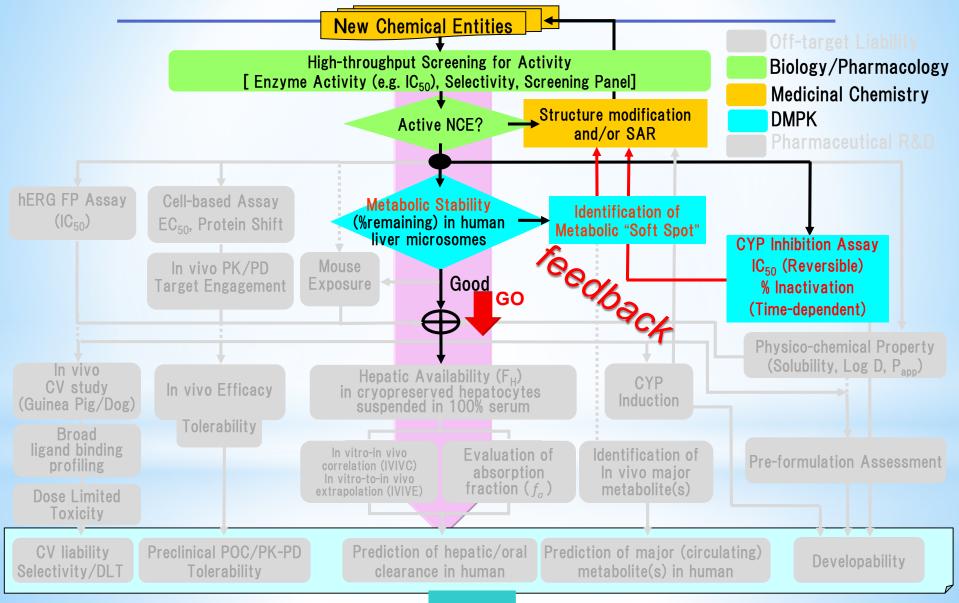
- The dramatic Change of Non-clinical DMPK Roles in the Discovery in 1990' -

Non-clinical DMPK used to mainly collect the excretion/mass balance data, ARG and metabolite profiling in safety animals for IND at the pharmaceutical company ~ 1980 with minimal contribution to the structure optimization......

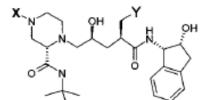
> Established Human Liver Bank (microsomes and hepatocytes) at MRL in 1993, and screening flow to optimize DMPK properties such as metabolic stability and CYP inhibition potential by structure modification.

However, almost the same time, commercial supplies of human liver microsomes, cryopreserved human hepatocytes and recombinant CYPs was started at IIAM, Gentest and IVT etc.....

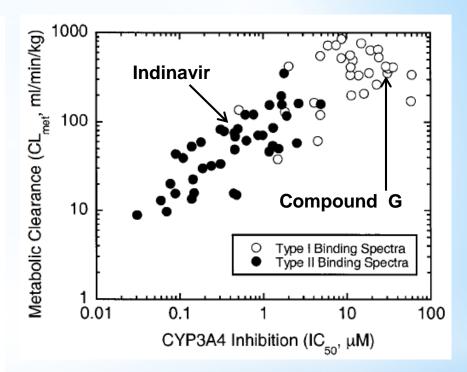
Thomas A. Baillie, Ph.D Vice President, Drug Metabolism MRL, Merck Non-clinical DMPK became a big player in the drug discovery at early optimization stage as it is today !



Tadanobu Inaba, Ph.D Professor, Pharmacology University of Toronto

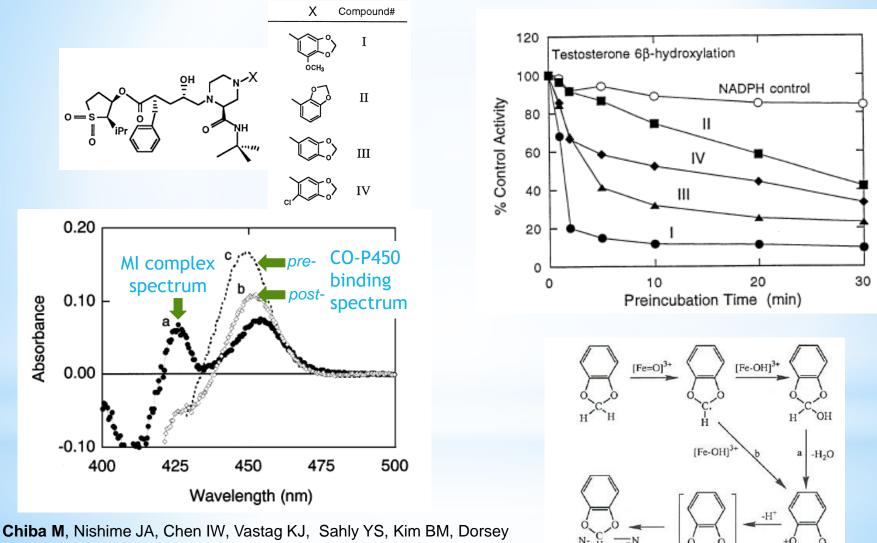

Albert P. Li, Ph.D Director, St. Louis University School of Medicine

DMPK Screenings in the Lead Optimization/Profiling Strategy for Clinical Development Candidate

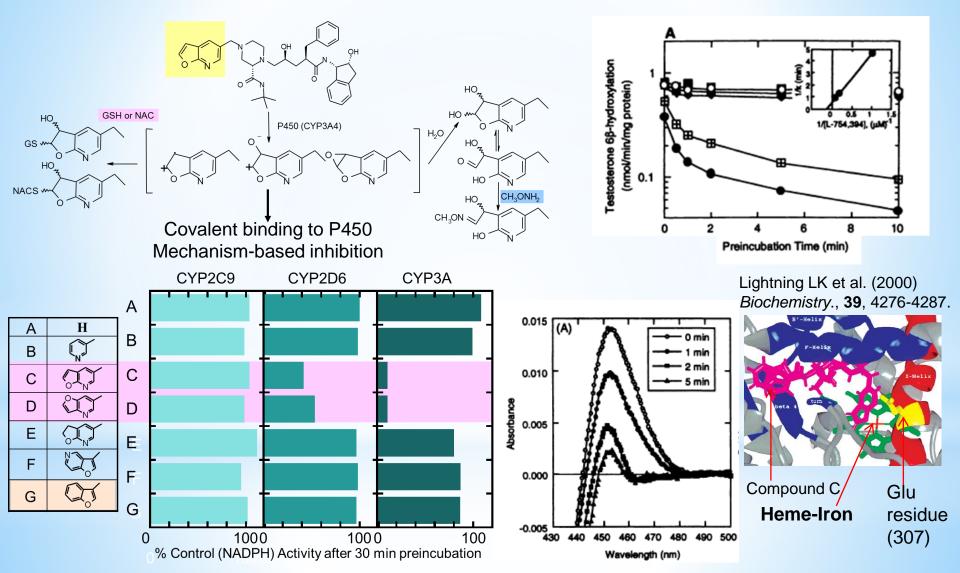


Pre-clinical development as a clinical candidate

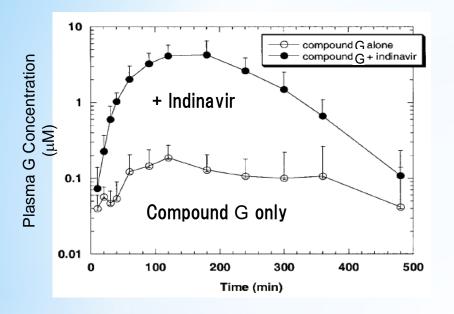
Relationship between Metabolic Stability and CYP3A Inhibition found in the DMPK Screening for HIV Protease Inhibitor Backup



No.	x	Y	P450 Binding Spectra	Metabolic Clearance (ml/min/kg)	IC _{s0} (µМ)
Indinavir	$\langle \rangle_{N}$	\bigcirc	11	75,0	0.451
I	\mathcal{O}^{\times}	\bigcirc	11	71.0	0.873
п	\mathcal{O}^{\times}	$\langle \hat{\mathbf{Q}} \rangle$	I	763	15,1
ш	\mathcal{A}	Û	1	854	8.70
IV	\mathbb{Q}_{N}^{\times}	Q	I	636	19.3
v	$\langle \rangle$	н	11	53.7	1.32
VI	$\langle \rangle$	人	II	70.7	0,990
VII		A	11	61.2	0.625


Chiba M, Jin L, Neway W, Vacca JP, Tata, JR, Chapman K and Lin JH (2001) P450 Interaction with HIV Protease Inhibitors: Relationship between Metabolic Stability, Inhibitory Potency, and P450 Binding Spectra, *Drug Metab.Dispos.*, **29**: 1-3.

Quasi-irreversible CYP3A inhibition (MI Complex) by Methylenedioxyphenyl HIV PI Backup found in the DMPK Screening


BD, Vacca JP, Lin JH (1998) Metabolite-P450 Complex Formation by Methylenedioxyphenyl HIV protease inhibitors in rat and human liver microsomes, *Biochem. Pharmacol.* **56**:223-230.

Mechanism-based P-450 Inhibition – Covalent binding to CYP3A - found in the DMPK Screening for HIV Protease Inhibitor Backup

Chiba M, Nishime J, Lin JH (1995) Potent and selective inactivation of human liver microsomal cytochrome P-450 isoforms by L-754394, an investigational human deficiency virus protease inhibitor. *J. Pharmacol. Exp. Ther.*, **275**, 1527-1534.

Combination Regime of HIV Protease Inhibitor with Indinavir as a Plasma Concentration "Booster" by Competitive CYP3A Inhibition in Patients

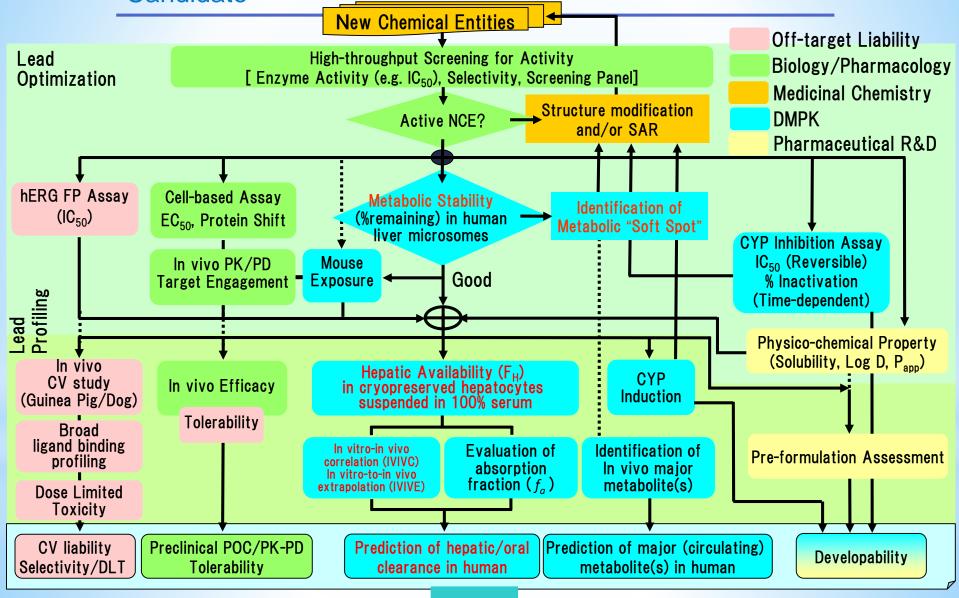
Monk

Hum

It was almost impossible to identify the compound which showed a good balance of efficacy (against mutated HIV), and metabolic stability....

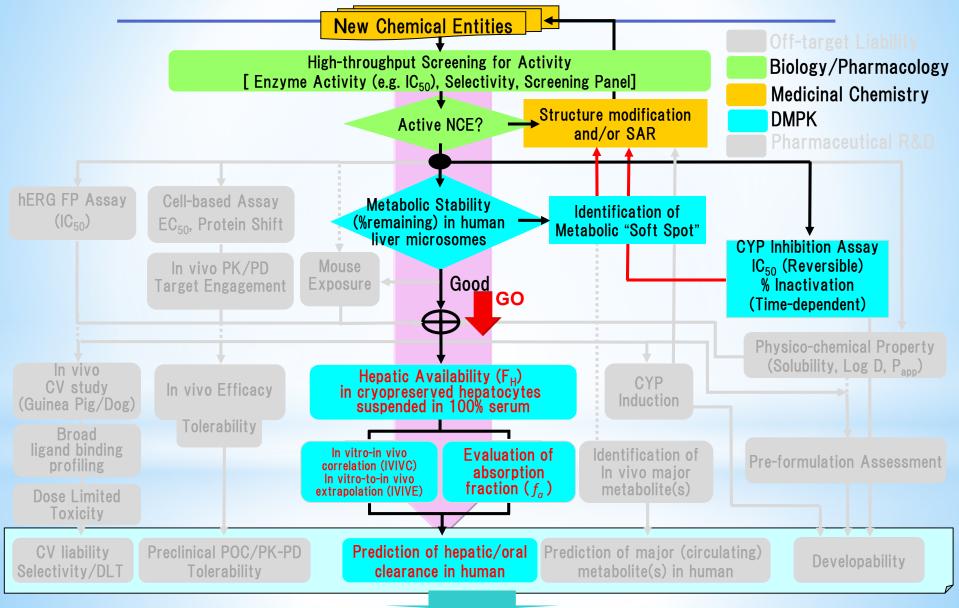
IC ₅₀ (μΜ)	Indinavir on G	G on Indinavir
Rat	0.10	21
Dog	0.13	36
Monkey	0.16	21
Human	0.17	30

Compound G metabolically very unstable, but had little inhibition potency for CYP3A. Then, by using high inhibition potential of indinavir to the metabolism of compound G, it was hypothesized that the co-administration of indinavir could boost plasma concentration of compound G.

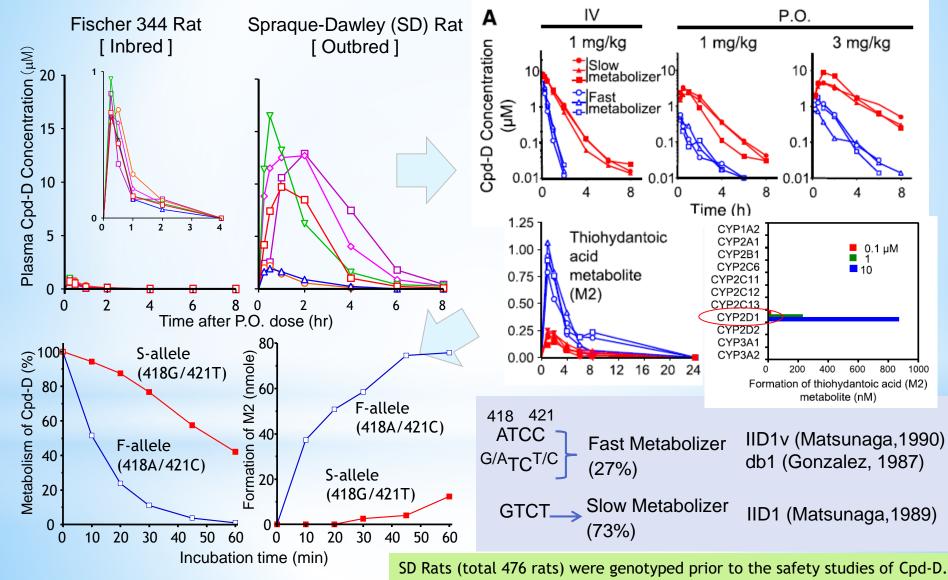

	Combination	(nM)	fold	(μMxhr)	fold	It was conf
Rat	Compound G (40 mg/kg)	240	19	0.9	18	was obser
	+ Indinavir (40 mg/kg)	4560	19	15.9		cimical stu
Dog	Compound G (5 mg/kg)	7600	2	19	7	Gentle regi
	+ Indinavir (20 mg/kg)	21500	3	133		200 mg/80
Monkey	Compound G (10 mg/kg)	< 30	60	-		established
	+ Indinavir (20 mg/kg)	60 1800		5.9	-	
Human	Compound G (200mg)	85	24	0.24	31	Jin L, Chen with indinavi
	+ Indinavir (800 mg)	1576		7.45		investigation

nfirmed that the boosting effect rved in clinical as well as in nonudies (rat, dog, monkey).

gimen (Compound G/Indinavir: 00 mg once daily) was d in Phase II (POC study) !!


I-W, Chiba M, Lin JH (2003): Interaction vir to enhance systemic exposure of an investigational HIV protease inhibitor in rats, dogs and monkeys. Xenobiotica 33, 643-654.

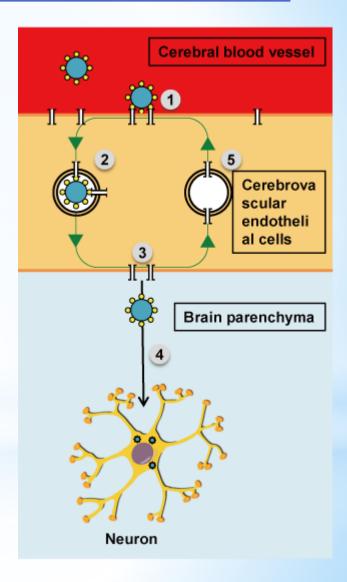
Lead Optimization/Profiling Strategy for Clinical Development Candidate


Pre-clinical development as a clinical candidate

DMPK Screenings in the Lead Optimization/Profiling Strategy for Clinical Development Candidate

Pre-clinical development as a clinical candidate

CYP2D1 Polymorphism caused by Nucleotide Substitutions (418A/421C vs. 418G/421T) In Rats



Hasegawa T., Eiki J.and Chiba M. (2014) Drug Metab. Dispos. 42:1548-1555 (2014).

My Passion to the Discovery/Development has never died...

is a bio-venture firm originating from the University of Tokyo and Tokyo Medical and Dental University with the aim of bringing about a paradigm shift in the fields of medicine and life science through the application and implementation of our own innovative technology for the delivery of drugs to the brain.

Acknowledgement

千葉大学薬学部 生物薬剤学教室	トロント大学医学部薬理学
鈴木徳治 先生 藤田正一 先生	稲葉忠信 先生
藤田正一 元王 桝渕泰宏 先生	セントルイス大学医学部
トロント大学薬学部	Albert P. Li 博士
K.S. Pang 教授	万有製薬(株) つくば研究センター
モントリオール総合病院	石井康行 博士 D. Schmatz 博士
A.J. Schwab 博士 C.A. Goresky 博士	大鵬薬品工業(株)研究本部
メルク医薬研究所	吉末訓弘 博士 北村龍一 博士
J. H. Lin 博士 L. Jin 博士	山谷英利 博士
D.C. Dean 博士 T.A. Baillie 博士	岩沢善一 博士
	そして共に研究させていただいた皆さんに!