Passion for Innovation. Compassion for Patients.[™]

2014 JSSX Award for Young Industrial Scientists

Risk Assessment of the Chemically Reactive Metabolites and Idiosyncratic Drug Toxicity in Drug Development

29th JSSX Meeting 22nd Oct. 2014

Daiichi Sankyo Co., Ltd. Shintaro NAKAYAMA PhD.

Contents

- Zone classification system for the risk assessment of idiosyncratic drug toxicity
- Risk assessment strategy to mitigate the formation of RMs in the early discovery stage
- Identification of the cellular response to the formation of covalent binding

Contents

- Zone classification system for the risk assessment of idiosyncratic drug toxicity
- Risk assessment strategy to mitigate the formation of RMs in the early discovery stage
- Identification of the cellar response to the formation of covalent binding

Understanding IDT

- IDT causes life-threatening toxic events (even death) in patients
- IDT can not be easily predicted from non-clinical toxicity studies
- Often only appears in post-marketing with low frequency (1/100 1/100,000)
- Leads to "Black Box Warnings", or drug withdrawal.
 - Ticlopidine (Hepatotoxicity, TPP)
 - Troglitazone (Hepatotoxicity)
 - Tienilic acid (Hepatotoxicity)
 - Aminopyrine (Agranulocytosis)
- 4 Mechanisms of IDT are not fully understood

Mechanism is Unclear but...

Reactive metabolite and its covalent binding to cellular macromolecules

 Many drugs associated with IDT are known to form reactive metabolites to bind to proteins covalently

Exposure of the drug

 The occurrence of IDT is rare with drugs given at a daily dose of 10 mg or less

Host –specific genetic, environment, and/or disease factors

• IDT does not occur in most patients

In order to clarify the correlation between amount of CB, daily dosage and risk of IDT, we performed the covalent binding study using 42 drugs with several safety profiles

Covalent Binding Categorized by the Safety Profile

•C.B. in three systems could not distinguish the safety categories

Nakayama et. al., Drug Metab Dispos. (2009)

Delicht-Serd

7

Daily Dose Categorized by the Safety Profile

Safety Categories

Daily dose could not distinguish the safety categories clearly

8

Correlation of Daily Dose and Covalent Binding Categorized by the Safety Profile

Both covalent binding and daily dose are related to the occurrence of IDT independently.

Zone Classification System Categorization of Safety Profile by the amount of Covalent binding and daily dosage

Nakayama et. Al., Drug Metab Dispos. (2009) 10

Contents

- Zone classification system for the risk assessment of idiosyncratic drug toxicity
- Risk assessment strategy to mitigate the formation of RMs in the early discovery stage
- Identification of the cellar response to the formation of covalent binding

Screening method for the detection of RMs

Hit-to-Lead	Lead Optimization		Candidate Selection	
	Trapping Assay	С	ovalent Binding	
: High throughput, structural elucidation			Assay	
×: Can not detect all RMs			: Directly detected to the binding to macromolecule	
Time dependent CYP inhibition Assay				
:High throu ×: Can not c	ughput DDI risk assessment letect all RMs	x: ne co	Low throughput, cessity of labeled mpounds	

Qualitative trapping assay using agents such as glutathione (GSH) is often performed in the early stages of drug discovery

Fate of the Reactive Metabolites and Detecting System

We hypothesized that TDI assays could be complementary to trapping methods.

In order to clarify the importance of TDI assays in detection of RMs, we investigated the relationships between the formation rate of [³⁵S]GS adducts, the enzyme inactivation rate in the TDI assay, and the extent of CB in HLMs

Correlation between [³⁵S] GSH Adduct and Amount of Covalent Binding

Four compounds with high level of CB did not show detectable GS adduct peaks → the trapping methods alone cannot replace the CB assay
Nakayama et. al., Drug Metab Dispos. (2011)

15

Four compounds that the GSH trapping assay failed to detect were inactivators of the enzyme in the TDI assay

Correlation between RMs intrinsic clearance and covalent binding

r = 0.77 (p < 0.0001)

r is the Spearman rank correlation coefficient.

Correlation of Clint, RMs to CB was better than that of GS adduct

A combination of the GSH trapping and TDI assays is an effective method for detecting compounds with the potential of highly reactive metabolites

Risk assessment strategy for reactive metabolites in drug discovery

Contents

- Zone classification system for the risk assessment of idiosyncratic drug toxicity
- Risk assessment strategy to mitigate the formation of RMs in the early discovery stage
- Identification of the cellar response to the formation of covalent binding

Introduction

Selected Gene Probe Sets Categorized by the Function

Affimetrix probe set ID	Correlation coefficient	Gene symbol	Gene title		
DNA repair					
1370931_at	0.60	Xrcc5	X-ray repair complementing defective repair in Chinese hamster cells 5		
1370537_at	0.55	Xroo6	X-ray repair complementing defective repair in Chinese hamster cells 6		
Ubiquitin / proteasome					
1371944_at	0.65	Ube2l3	ubiquitin-conjugating enzyme E2L 3		
1398792 at	0.58	Psmc1	proteasome (prosome, macropain) 26S subunit, ATPase, 1		
1386930_at	0.57	Psmd4	proteasome (prosome, macropain) 26S subunit, non-ATPase, 4		
1383073_at	0.55	Usp14	ubiquitin specific peptidase 14		
1368817_at	0.51	Psme4	proteasome (prosome, macropain) activator subunit 4		
Apoptosis					
1373052 at	0.59	Pdcl3	phosducin-like 3		
1386909_a_at	0.58	Vdac1	voltage-dependent anion channel 1		
Cell proliferation					
1386895_at	0.66	Maged1	melanoma antigen, family D, 1		
1373122_at	0.64	Jub	jub, ajuba homolog (Xenopus laevis)		
1370803 at	0.58	Zwint	ZW10 interactor		
Epigenetics, gene transcription and signal transduction					
1382663_at	0.57	Batf	basic leucine zipper transcription factor, ATF-like		
1390944_at	0.56	Chmp4c	chromatin modifying protein 4C		
1372122_at	0.54	Tsg101	tumor susceptibility gene 101		
1367840_at	0.53	Hgs	hepatocyte growth factor-regulated tyrosine kinase substrate		
Oxidative stress / cell proliferation					
1377662_at	0.62	Pir	pirin (iron-binding nuclear protein)		
Oxidative stress (excluded from gene set)					
1372523_at	0.56	Gclc	glutamate-cysteine ligase, catalytic subunit		
1369061_at	0.56	Gsr	glutathione reductase		
1368037_at	0.55	Cbr1	carbonyl reductase 1 /// inducible carbonyl reductase-like		
1370688_at	0.54	Gclc	glutamate-cysteine ligase, catalytic subunit		
1388122_at	0.52	Gstp1	glutathione S-transferase pi 1		
1398753 at	0.51	Akr1a1	aldo-keto reductase family 1, member A1 (aldebyde reductase)		

A total of 65 genes showed statistically significant correlation between the expression level and CB level, and 16 genes were selected as CB-associated genes based on their biological functions

Ingenuity Pathway Analysis of Genes Related to Formation of CB

Following the CB formation....

- Adaptive response was occurred
- •HNF4a and NFkB would be candidate key factors

Summary

- We established a zone classification system using covalent binding in human hepatocytes and a daily dose for the risk assessment of IDT.
- We demonstrated that a combination of the [³⁵S]GSH trapping and TDI assays is an effective method for detecting compounds potentially capable of generating highly reactive metabolites in the early stages of drug discovery.
- We estimated the molecular response against RM and CB formation by correlation analysis between the formation of the CB and TGx data.

Acknowledgment

Daiichi Sankyo Co., Ltd.

- O. Okazaki
- T. Izumi
- N. Okudaira
- D. Asano
- K. Itokawa
- S. Inoue
- Y. Imamura
- T. Karibe
- A. Kurihara
- Y. Kobayashi
- R. Sawamura
- T. Shiiki
- D. Sugiyama
- T. Nishiya

- K. Suzuki
- H. Takakusa
- T. Deguchi
- D. Nakai
- Y. Nagai
- R. Nakagomi
 - C. Makino
 - H. Yukinaga
 - Y. Yoshigae
 - A. Watanabe
 - K. Watanabe
- N. Watanabe
 - R. Atsumi
 - T. Matsuyama

- K. Shiosakai
- K. Honda
- N. Suzuki
- H. Masumoto
- K. Igeta
- M. Iwasaki
- Y. Suzuki
- K. Sudo
- Y. Miyaji
- Y. Metsugi
- K. Fujimoto
- N. Kiyosawa
- K. Ito

- Toxicogenomics Project in Japan
- Y. Ohno

- H. Yamada
- T. Urushidani
 - Y. Morikawa

