Identification and Analysis of Drug-Metabolizing Enzyme Genes in Cynomolgus Monkey

- Cytochrome P450s -

Shin Nippon Biomedical Laboratories, Ltd. Pharmacokinetics and Bioanalysis Center Genome Research Group

Yasuhiro Uno

2010JSSX 2010.10.08

Outline

- Comprehensive isolation of cytochrome P450 (CYP) cDNAs in cynomolgus monkey
- Characterization of CYP2C76 (not orthologous to human CYPs)
- CYP2C76 in pitavastatin metabolism (species difference)
- > Discovery of null genotype in cynomolgus CYP2C76 gene
- Molecular analysis of other cynomolgus CYPs in CYP2-4 family
- Discovery of genetic variants (including null genotypes) in cynomolgus and rhesus CYP3A4 and CYP3A5 genes
- Isolation and analysis of glutathione S-transferase cDNAs in cynomolgus monkey

..... etc.

Outline

- Comprehensive isolation of cytochrome P450 (CYP) cDNAs in cynomolgus monkey
- Characterization of CYP2C76 (not orthologous to human CYPs)
- CYP2C76 in pitavastatin metabolism (species difference)
- > Discovery of null genotype in cynomolgus CYP2C76 gene
- Molecular analysis of other cynomolgus CYPs in CYP2-4 family
- Discovery of genetic variants (including null genotypes) in cynomolgus and rhesus CYP3A4 and CYP3A5 genes
- Isolation and analysis of glutathione S-transferase cDNAs in cynomolgus monkey

..... etc.

Species Difference in Drug Metabolism

- Species difference is well-known in drug metabolism (i.e. rat and human).
- Due to the evolutionarily close relationship to human, monkey is used in drug metabolism.
- However, the difference is occasionally seen in monkey, as compared with human.

Cytochrome P450 (CYP)

- CYP forms gene family comprised of 57 functional genes and 58 pseudogenes in human.
- CYP genes within subfamily are highly identical to each other and form the gene cluster in the genome.
- The number of CYP genes within subfamily differs among species.

Species difference in drug metabolism

Lack of genetic information hampered elucidating species differences at molecular level in monkey.

Identify CYP cDNAs in cynomolgus monkey

EST (Expressed Sequence Tags) Sequencing

- Full-length cDNA library was generated from cynomolgus monkey liver.
- The end sequence of cDNAs was determined for randomly picked clones by one-pass sequencing.
- ESTs (cDNAs) obtained were annotated using human RefSeq mRNAs using BLAST program.

Sequence Processing

Monkey	Human .	Sequence identity (%)		
	naman	cDNA	Amino acids	
CYP2A23 ኒ	∫ CYP2A13	95	94	
CYP2A24 ∫	l CYP2A6	95	93	
CYP2C20(8)*	CYP2C8	95	92	
CYP2C43` (CYP2C9	94	93	
СҮР2С75 🕽	CYP2C19	95	93	
CYP2C76	CYP2Cs	81	71	
CYP2D17*	CYP2D6	94	93	
CYP2E1*	CYP2E1	95	94	
CYP2J2	CYP2J2	95	95	
CYP3A5	CYP3A5	94	91	
CYP3A8(4)*	CYP3A4	95	94	
CYP4A11	CYP4A11	96	95	
CYP4F3v2	CYP4F3v2	95	96	
CYP4F11	CYP4F11	93	91	
CYP4F12	CYP4F12	93	92	
CYP4F45(2)	CYP4F2	95	96	

CYP cDNAs Isolated from Cynomolgus Monkey Liver

* Known CYP cDNAs

Tissue Expression Pattern of Cynomolgus Monkey CYP2C mRNAs

Drug Metabolism Mediated by CYP2C76

MS, Monkey liver microsomes 1, CYP2C20; 2, CYP2C43; 3, CYP2C75; 4, CYP2C76

CYP2C76 Protein Expression in Primate Liver

CYP2C Gene Cluster in Monkey Genome

CYP2C76

- > Maybe a major CYP2C in monkey liver.
- A functional drug-metabolizing enzyme, expressed in liver.
- > Ortholog was not present in human.
- ⇒CYP2C76 accounts for species difference in drug metabolism between monkey and human?

⇒Investigate metabolism of pitavastatin (cholesterollowering drug)

HPLC Chromatograms of Pitavastatin and Its Metabolites in Human and Monkey Hepatic Microsomes

Difference of Pitavastatin Metabolism between Monkey and Human

CYP2C76

- > Not orthologous to human CYPs.
- Responsible for species difference between monkey and human in drug metabolism.
- Monkeys without CYP2C76 function might show more similar metabolic pattern to human.

Genetic Variants Identified in CYP2C76

Other Cynomolgus CYPs Isolated by EST Sequencing are Species-specific?

Monkey		Human	Sequence identity (%)		b)
		numan	cDNA	Amino acide	6
Γ	CYP2A23	∫ CYP2A13	95	94	
L	CYP2A24 J	L CYP2A6	95	93	
	CYP2C20(8)*	CYP2C8	95	92	
	CYP2C43` (CYP2C9	94	93	Further
	CYP2C75 J	CYP2C19	95	93	
	CYP2C76	CYP2Cs	81	71	analyzed
_	CYP2D17*	CYP2D6	94	93	_
Г	CYP2E1*	CYP2E1	95	94	
	CYP2J2	CYP2J2	95	95	
I	CYP3A5	CYP3A5	94	91	
	CYP3A8(4)*	CYP3A4	95	94	
I	CYP4A11	CYP4A11	96	95	
	CYP4F3v2	CYP4F3v2	95	96	
	CYP4F11	CYP4F11	93	91	
	CYP4F12	CYP4F12	93	92	
L	CYP4F45(2)	CYP4F2	95	96	

* Known CYP cDNAs

Acknowledgments

Hokkaido University

Lab. of Translational Research
Lab. of Drug Metabolism

Show Pharmaceutical University

Dr. Hiroshi Yamazaki

Hyogo University of Health Sciences

Dr. Hideki Fujino

University of Tokyo

- Dr. Yutaka SuzukiDr. Sumio Sugano
- **Tokai University**
- ≻Dr. Ituro Inoue

SNBL

- ≻Mr. Masahiro Utoh
- Dr. Koichiro Fukuzaki
- Dr. Ryoichi Nagata

Dr. Tetsuya Kamataki