

三共株式会社薬剤動態研究所 池田敏彦

Purification of RS-7897 Hydrolase from Rat Liver

	Total activity	Specific activity	Purification factor	Recovery
Step	(nmol/min)	(nmol/min/mg-protei)		(%)
Homogenate	1012	0.04	1.0	100.0
Cytosol	693	0.11	2.7	68.5
(NH ₄) ₂ SO ₄ ppt.	576	0.30	7.5	56.9
DEAE Sephacel	163	0.60	15.0	16.1
Superdex TM 75	145	17.44	439.1	14.3
1 st Hydroxylapatite	7 0	49.57	1248.3	6.9
2 nd Hydroxylapatit	e 10	131.83	3319.9	1.0

SANKYO Identification of RS7897 Hydrolase as PAP-I (Pyroglutamyl Aminopeptidase I)

SDS-PAGE of purified fraction

In-gel trypsin digestion nano-LC/ESI-MS/MS analysis NCBI nonredundant database putative mouse **Pyroglutamyl Aminopeptidase I (PAP-I)** (gi 12963583)

Expression and Purification of Recombinant PAP-Is

Rat, mouse and human PAP-Is were expressed by transfecting *E. coli* with cDNA.

SANKYO Comparison of Activities of Different PAP-Is

S.

	Substrates					
	RS-7897			L-pGlu- <i>p</i> NA		
	0—	N CONH	ONO ₂	₀-	CONH-	
Species	K _m (mM)	V _{max} (µmol/min/mgP	V _{max} /K _m) (ml/min/mgP)	K _m (mM)	V _{max} (µmol/min/mgl	V _{max} /K _m P) (ml/min/mgP)
Purified PAP-I						
Rat liver	0.41	3.4	8.4	0.030	5.4	176.0
Recombinant PA	P-I					
Rat	0.55	6.0	10.8	0.054	17.7	327.7
Mouse	0.58	5.8	10.0	0.038	8.0	209.9
Human	0.50	4.7	9.4	0.038	10.8	280.9
mgP: mg prote	in					

Substrate Recognition by PAP-I

Hydrophobic *: C > S, O, N as substrate pocket of PAP-I

Any group having amino group is acceptable as substrate except for proline.

Possibility of Prodrug Conversion of Amino-Compounds

SANKYO

- Arbecacin Butirosin Capreomycin Destomycin A Dibekacin Enviomycin Fortimicin Gentamicin
- Isepamicin Kanamycin Neomycin Netilmicin Paromomycin Ribostamycin Sisomicin Tuberactinomycin

Camostat Butirosin Lamifiban Melagatran Nafamostat Xemilofiban

Clortermine Butirosin Mexiletine Midodrine Primaquine

SANKYO Two Prodrugs Related to Angiotensin II (AII)

Plasma Concentrations after Oral Administration of Temocapril to Rat and Human

Purification of Temocapril-Esterase from Rat Plasma

Substrate	Temocapril		-Naphthyl acetate		Benzoyl choline	
Purification step	Activ	vity ¹⁾	Activ	vity ²⁾	Acti	vity ³⁾
Plasma	1.4	(1)	0.19	(1)	0.54	(1)
$(NH_4)_2SO_4$	1.2	(0.9)	0.17	(0.9)	0.55	(1)
DEAE-Sephacel (1) 2.1	(1.5)	0.32	(1.7)	0.65	(1.7)
DEAE-Sephacel (2) 4.6	(3.4)	0.63	(3.3)	0.94	(2.6)
DEAE-HPLC	7.5	(5.5)	1.20	(6.3)	1.42	(0.04)
Hydroxylapatite	50.7	(37.3)	6.94	(36.3)	0.02	(0.0)
Hydrophobic Inter	. 90.9	(66.9)	9.97	(52.2)	0.0	(0.0)
Gel permeation	293.0	(215.6)	26.8	(140.4)		
TEAE-HPLE	281.9	(207.5)	12.0	(62.7)		

1)nmol/min/mg-protein 2) µ mol/min/mg-protein 3)nmol/min/mg-protein

N-Terminal Amino Acid Sequence of Temocapril-Esterase

H₂N-Gly -Pro-Ser-Ser-Pro-X -Val-Val-Val-Thr-Thr-

Rat liver carboxylesterases¹⁾

RL1: H₂N-Asp-Pro-Ser- X -Pro-Pro-Val-Val-Asp-Thr-Val-RL2: H₂N- X -Pro-Ser- X -Pro-Pro-Val-Val-Asn- X -Val-RH1: H₂N-Tyr-Pro-Ser- X -Pro-Pro-Val-Val-Asn- X -Val-Human liver carboxylesterase¹⁾ HU1: H₂N-Gly-Pro-Pro-Ser-Pro-Pro-Val-Val-Asp-Asp-Val-

1) M.Hosokawa, Xenobio. Metabol. Dispos. 5, 953 (1990)

Plasma Concentrations after Oral Administration of Olmesartan Medoxomil to Rat and Human

SANKYO DEAE-Sephacel Chromatogram of Olmesartan Medoxomil-Esterase

Purification of Olmesartan Medoxomil-Esterase from Human Plasma

Substrate	Olmesartan medoxomil	Phenyl acetate B	Benzoyl choline
Purification step	Activity ¹⁾	Activity ²⁾	Activity ³⁾
Plasma	13.0 (1)	0.027 (1)	13.42 (1)
Blue Sepharose	312.4 (24)	0.583 (22)	0.0 (0)
DEAE-Sephacel	(1) 2457.0 (190)	3.067 (114)	0.0 (0)
DEAE-Sephacel	(2) 5021.2 (389)	8.071 (299)	0.0 (0)

1)nmol/min/mg-protein 2) OD/2min/mg-protein 3)nmol/min/mg-protein

H₂N-Ala-Lys-Leu-Ile-Ala-Leu-Thr-Leu-Leu-Gly-Met-Gly-

Leu-Ala-Leu-Phe-Arg-Asn-His-Gln-

= Aryl esterase

1. Metabolites more lipophilic than the parent drug

2. Monoglucuronide serving as the substrate for further glucuronidation

*:Position labeled with ¹⁴C

 $C_{20}H_{34}O_2$

In Vitro Metabolites of Plaunotol SANKYO Produced by Rat Liver Homogenate

Lipase- and Cholesterol Esterase- Treatments of Highly Lipid Soluble Metabolites of Plaunotol (M-12 *in vitro*, liver homogenates)

Hexane-Ethyl acetate (7 : 3)

Identification of Plaunotol Stearate by GC/MS

SANKYO

Synthetic authentic standard of plaunotol-1-stearate

Plaunotol-1-stearate produced *in vitro*

1. Metabolites more lipophilic than the parent drug

2. Monoglucuronide serving as the substrate for further glucuronidation

SANKYO SANKYO Elucidation of Monoglucuronide by MS/MS

SANKYO SANKYO SANKYO

Structure Elucidation of Tandem Diglucuronide by Two-dimensional NMR

SANKYO

Sequential Production of Diglucuronide

SANKYO Nalmefene Diglucuronide Only in Dog Urine

Nalmefene diglucuronide

Dixon, R., *et al. Pharm. Res.*, **6**: 28-32 (1989)
Murthy, S.S., *et al. Xenobiotica*, **26**: 779-792 (1996)

(MW: 272)

(MW: 288)

(MW: 270)

All substrates tested were converted (approx.2-10%) to structurally novel diglucuronides, where two glucuronosyl groups are bound to a single hydroxyl group.

Chemical structures were characterized by tandem mass spectrometry.

Characterization of Human UGT Isoform Responsible for Dihydrotestosterone Diglucuronidation

低分子の動きから高分子の動きへ

SANKYO Acknowledgments						
二大怀采用	到您你了九川					
安部康司	藤森いづみ	村井孝弘	中村公一			
徳井太郎	山村直敏	岩渕晴男	渡邊美佐			
山田真起子	堀口正明	佐復直純	高仲 郁			
河合賢司	清水和已	寺尾俊夫	佐々木幸雄			
廣田孝司	椿 秀美	栗原厚	吉ヶ江泰志			
数井美穂	萩原克宣	本多伴世				
熊本大学大	学院薬学研究	科				

小田切優樹