CHUGAI

Roche Roche Group

## メカニズムに基づいたモデル解析の創薬研究への活用

# Application of mechanistic model analysis in drug discovery research

Koji Yamaguchi, Ph.D.

Research division, Chugai Pharmaceutical Co., Ltd.

Oct 14, 2016

## Mechanistic PK model usage in drug discovery and development at preclinical stage





## Contents



## □ A diffusion model analysis considering skin metabolism

• Transdermal vitamin D<sub>3</sub> analogues

## **D** PKPD analysis

• An SGLT2 inhibitor, tofogliflozin

## A diffusion model analysis considering skin metabolism

**IBI18** 



Aiming to become "Top Pharmaceutical Company"



Drug: transdermal vitamin D3 analogues

- Disease area: psoriasis
- **Target organ:** viable epidermis (skin)
- **MOA:** 'induction of cell differentiation' and 'inhibition of keratinocyte proliferation'
- Ideal PK property:
  - Eliminate rapidly before penetrated into blood circulation to avoid side effect  $\checkmark$



### Rat skin permeation profile of Maxacalcitol





- ✓ Maxacalcitol was highly metabolized in skin.
- ✓ Skin metabolism might affect apparent permeability of a drug.

Yamaguchi et al., Pharm Res 23: 680-688, 2006

## Diffusion model analysis considering skin metabolism



### Divide permeation factors into 'diffusivity' and 'metabolic rate'



Vehicle [partitioning] **Stratum corneum** [diffusivity] Viable epidermis [diffusivity, metabolism]

**Dermis** [diffusivity]







Donor

## Low diffusivity in VED blocks permeation of highly lipophilic compounds



Structure-permeability relationship analysis using 10 drugs (log P: -0.89 to 5.34)

 $D_{VED}$  decreases when log P > 2.  $\log D_{VED} = -0.0715 \bullet (\log K_{a/w})^2 + 0.142 \bullet (\log K_{a/w}) - 2.63 \quad \Box$ 

Simulation study to understand diffusivity in VED on skin metabolism of a drug



Low diffusivity in VED of lipophilic drugs would increase the probability of drug metabolism in skin.

Yamaguchi et al., *Pharm Res* 23: 680–688, 2006; Yamaguchi et al., *J Pharm Sci* 97: 4391–4403, 2008

## Highly lipophilic vitamin D3 analogues showed low permeability because of low diffusivity in VED





#### A three-dimensional cultured human skin

Yamaguchi et al., Int J Pharm 353: 105-112, 2008 7

### **Conclusion 1**



- VED (viable epidermis and dermis) acts as a permeation barrier for highly lipophilic compounds due to low diffusivity in VED.
- Low diffusivity in VED contributes to increase the probability of drug metabolism in skin, which would reduce penetration of unchanged drug.
- ➤ A new vitamin D3 analogue with high lipophilicity was developed, which showed low skin permeability and low adverse event.

#### Innovation all for the patients





Drug design

Blood glucose lowering effect can be explained only by accelerated renal glucose clearance (db/db mice)





Yamaguchi et al., J Pharm Sci 101: 4347–4356, 2012

Error bar: SD

## Effect of an SGLT1/SGLT2 inhibitor, phlorizin, on renal glucose excretion in rat





### Plasma phlorizin

Yamaguchi et al., Drug Metab Dispos 39: 1801–1807, 2011

## PK/PD analysis for the effect of SGLT inhibitors on renal glucose clearance in rat





## Relationship between selectivity and maximal in vivo efficacy on renal glucose excretion





\* 1 nM Ki for SGLT2 was assumed for the simulation

### Confidence for clinical efficacy and safety

#### Simulation study indicated that

- 1. a highly selective SGLT2 inhibitor show comparable efficacy to SGLT1/2 dual inhibitor under hyperglycemic condition.
- 2. however, the maximal effect was lower than dual inhibitor under normal plasma glucose level.
- This suggests that a highly selective SGLT2 inhibitor, tofogliflozin, would show sufficient efficacy for hyperglycemia and low risk of hypoglycemia.

## Conclusion 2



- Blood glucose lowering effect could be explained only by accelerated renal glucose clearance with no consideration of other mechanism (PoC).
- Efficacy of SGLT inhibitor can be controlled by saturation of SGLT inhibition and T1/2 of a drug.
- In vivo PD prediction from in vitro seemed to be possible, that increased the confidence for in vitro screening.
- Simulation study suggested that highly selective SGLT2 inhibitor would show comparable efficacy to dual inhibitor under hyperglycemic condition but low risk of hypoglycemia. That gave us confidence for our strategy.

### Mechanistic PK model usage in drug discovery



### Drug discovery **Drug development** PK analysis including DDI Drug design **PBPK** modeling PoC in non-clinical Preferable Regimen design **PKPD** analysis TKTD analysis in vitro – in vivo correlation Human prediction of PK, PD, TD Translation from animal to human In vivo difference including physiology Mechanistic In vitro - in vivo difference In vitro - in vivo difference In vitro species-difference

### Pre-clinical stage

## Acknowledgements

### Josai University

Prof. Kenji Sugibayashi

### Chugai Pharmaceutical Co., Ltd.

### (DMPK)

Motohiro Kato, Tetsuya Mitsui, Keiichi Morita, Taiji Miyake,

Maiko Takada, Miho Ayabe, Toshinori Yamamoto, Rie Shiokawa,

Yuko Nomiyama, Norihisa Ohishi, Yoshinori Aso, and Masaki Ishigai

### (Pharmacology)

Sachiya Ikeda, Masayuki Suzuki, Kimie Asanuma, Kazuharu Ozawa, and Takahiro Kawai

### (Chemistry)

Tsutomu Sato, Yoshihito Ohtake, Kazumi Morikawa, and Kazuki Shimizu on behalf of chemists

### Chugai Research Institute for Medical Science, Inc.

Tatsuo Yata and Hitoshi Hagita



Innovation all for the patients



(Roche) A member of the Roche group