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 A diffusion model analysis considering  skin metabolism
 Transdermal vitamin D3 analogues

 PKPD analysis
 An SGLT2 inhibitor, tofogliflozin
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A diffusion model analysis considering skin metabolism

Drug: transdermal vitamin D3 analogues

 Disease area: psoriasis

 Target organ: viable epidermis (skin)

 MOA: ‘induction of cell differentiation’ and ‘inhibition of keratinocyte proliferation’

 Ideal PK property:

 Eliminate rapidly before penetrated into blood circulation to avoid side effect

vehicle
stratum corneum

viable epidermis

dermis

Permeability 

Drug design
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Rat skin permeation profile of Maxacalcitol
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Yamaguchi et al., Pharm Res 23: 680–688, 2006 

 Maxacalcitol was highly metabolized in skin.
 Skin metabolism might affect apparent permeability of a drug.

Metabolites
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Diffusion model analysis considering skin metabolism

Divide permeation factors into ‘diffusivity’ and ‘metabolic rate’ 
Vehicle  [partitioning]
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Viable epidermis [diffusivity, metabolism]

Dermis [diffusivity]
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Low diffusivity in VED blocks permeation of highly lipophilic compounds

Yamaguchi et al., Pharm Res 23: 680–688, 2006; Yamaguchi et al., J Pharm Sci 97: 4391–4403, 2008 
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/ -·+·-= wowoVED KKD DVED decreases when log P > 2.

Simulation study to understand diffusivity in VED on skin metabolism of a drug

Metabolites
Low diffusivity in VED of lipophilic drugs 
would increase the  probability of drug 
metabolism in skin. 
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Highly lipophilic vitamin D3 analogues showed low permeability because 
of low diffusivity in VED 
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logD: 4.57 logD: 5.34 logD: 6.08 Error bar: SD

Drug design
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Conclusion 1

 VED (viable epidermis and dermis) acts as a permeation barrier for highly lipophilic compounds due to 
low diffusivity in VED.

 Low diffusivity in VED contributes to increase the probability of drug metabolism in skin, which would 
reduce penetration of unchanged drug.

 A new vitamin D3 analogue with high lipophilicity was developed, which showed low skin 
permeability and low adverse event. 
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Drug: a highly selective SGLT2 inhibitor, tofogliflozin

 Disease area: type II diabetes mellitus

 Target organ: kidney

 MOA: Blood Glucose reduction caused by SGLT2 inhibition expressed in the proximal tubule 

 Ideal Drug property:

High selectivity toward SGLT2 to avoid hypoglycemia risk caused by SGLT1 inhibition

PKPD analysis

SGLT2 SGLT1SGLT2 SGLT2

Glucose reabsorption and its inhibition at proximal tubule

× × ×

GFRGFR

SGLT1

 A drug affects only 
kidney?

 In vitro selectivity is 
reflected in in vivo?
 Highly selective 
SGLT2 inhibitor show 

sufficient efficacy? 
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Blood glucose lowering effect can be explained only by accelerated 
renal glucose clearance (db/db mice)

PD model

PK model

CGlc

Vd, Glc

vin
vout

k12k01

k21

k10

V1/F
CD

D

D
RR CEC

CECLCL
+
×

+=
50

max
0,

Dose

0

2500

5000

7500

10000

vehicle

C
um

ul
at

iv
e 

gl
uc

os
e 

ex
cr

et
ed

in
to

 u
rin

e 
  (

m
g/

kg
)

0–5 h                  0–5 h                  0–5 h  
Vehicle     30 mg/kg      300 mg/kg

Urinary glucose

0.001

0.01

0.1

1

10

100

0 2 4 6 8

T-
10

95
A

 c
on

ce
nt

ra
tio

n
in

 p
la

sm
a 

  (
μg

/m
L)

Time (h)

Plasma T-1095A

△: 30 mg/kg
□: 300 mg/kg

0

1

2

3

4

5

0 2 4 6 8

B
lo

od
 g

lu
co

se
 (m

g/
m

L)

Blood glucose

Time (h)

○: vehicle      △: 30 mg/kg
□: 300 mg/kg

Yamaguchi et al., J Pharm Sci 101: 4347–4356, 2012 

Obs
Pred

Indirect response model

Error bar: SD

Obs PredObs
Pred

Drug design 
and 

regimen
 Effective time is controlled by 
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Effect of an SGLT1/SGLT2 inhibitor, phlorizin, on renal 
glucose excretion in rat
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PK/PD analysis for the effect of SGLT inhibitors on renal glucose 
clearance in rat 
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A nonlinear parallel tube model considering GFR and SGLT1, 2-mediated glucose 
reabsorption
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Relationship between selectivity and maximal in vivo efficacy on renal 
glucose excretion
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Yamaguchi et al., J Pharmacol Exp Ther 345: 52–61, 2013

Simulation study indicated that 
1. a highly selective SGLT2 inhibitor show comparable efficacy to SGLT1/2 dual inhibitor under hyperglycemic condition. 
2. however, the maximal effect was lower than dual inhibitor under normal plasma glucose level.
 This suggests that a highly selective SGLT2 inhibitor, tofogliflozin, would show sufficient efficacy for hyperglycemia and low risk of 

hypoglycemia.

Hyperglycemic conditionsNormal condition
[Selectivity]

Low

High

[Selectivity]
Low
High

Confidence for clinical efficacy and safety
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Conclusion 2

 Blood glucose lowering effect could be explained only by accelerated renal glucose clearance with no 

consideration of other mechanism (PoC).

 Efficacy of SGLT inhibitor can be controlled by saturation of SGLT inhibition and T1/2 of a drug.

 In vivo PD prediction from in vitro seemed to be possible, that increased the confidence for in vitro 

screening.

 Simulation study suggested that highly selective SGLT2 inhibitor would show comparable efficacy to dual 

inhibitor under hyperglycemic condition but low risk of hypoglycemia.  That gave us confidence for our 

strategy.
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PKPD analysis

TKTD analysisTKTD analysis

PK analysis including DDIPK analysis including DDI

Mechanistic PK model usage in drug discovery

Drug discovery
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In vivo difference including physiology

In vitro species-difference

Translation from animal to human

 Drug design
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 Preferable Regimen design

 in vitro – in vivo correlation
 Human prediction of PK, PD, TD

 Drug design
 PoC in non-clinical
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 in vitro – in vivo correlation
 Human prediction of PK, PD, TD

In vitro - in vivo differenceIn vitro - in vivo difference

Drug development

Mechanistic 
modeling

PBPK modeling
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