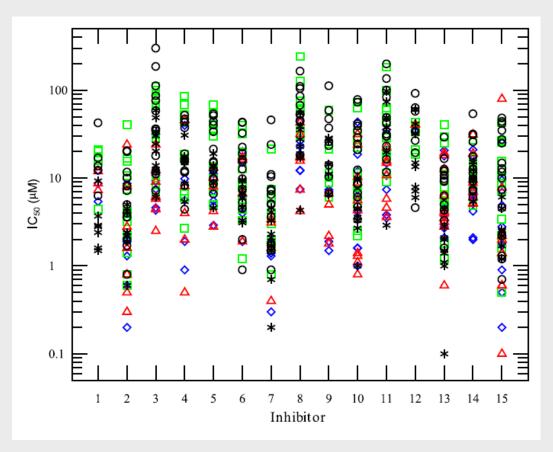


PKNCS, Kobe Pharma Research Institute, Japan

Development Germany


In Vitro Transporterデータに基づく薬物相互作用予測を目指した企業的研究
Prediction of drug interaction based on in vitro transporter data at pharmaceutical industry

Nippon Boehringer Ingelheim Co. Ltd Naoki Ishiguro

Inter-laboratory variability of in vitro P-gp IC₅₀ values

Experimental systems used

Caco2

P-gp-LLC-PK1

P-gp-MDCK

P-gp-vesicle

Equations for IC₅₀ calculations of data from the cell systems

Effux ratio

BtoA

KP (AtoB)

Net secretory flux

Inhibitors used

1 amiodarone, 2 carvedilol, 3 diltiazem, 4 felodipine, 5 isradipine, 6 mibefradil, 7 nicardipine, 8 nifedipine, 9 nitrendipine, 10 quinidine, 11 ranolazine, 12 sertraline, 13 telmisartan, 14 troglitazone, 15 verapamil

Big variability (20-796 fold) in IC₅₀ values was identified among 23 different laboratories, if difference in experimental conditions are not considered.

Potential factors involved in variability of IC₅₀ values

Experimental system

- Cell system
 - P-gp-expressing LLC-PK1
 - P-gp-expressing MDCK
 - Caco2
- Cell free system
 - P-gp expressing vesicle

Experimental condition

- In vitro probe substrate
- Substrate conc. (nd)
- pH gradient (nd)
- BSA supplementation
- Sink condition
- Buffer system (nd)

Experimental analysis

- Equations for IC₅₀
 calculation
 - Efflux ratio
 - BtoA
 - AtoB
 - BtoA-AtoB
 - etc

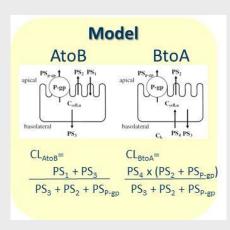
N. Ishiguro_CBI_June2014

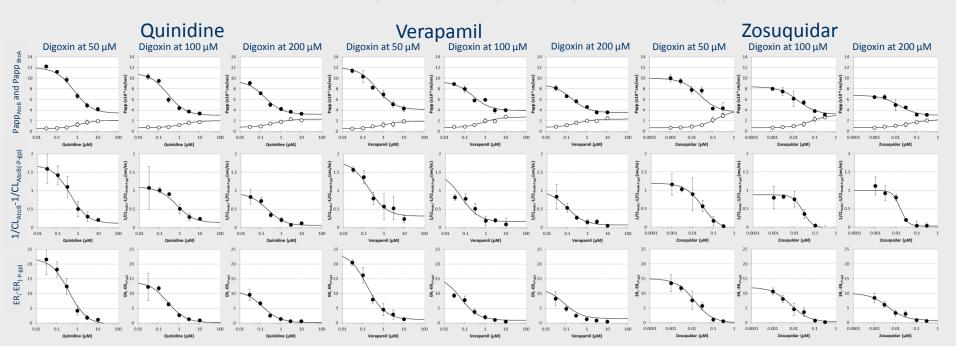
Experimental analysis

-Impact of IC₅₀ calculation method (1)-

IC₅₀ calculation (4 equations)

Empirical approach

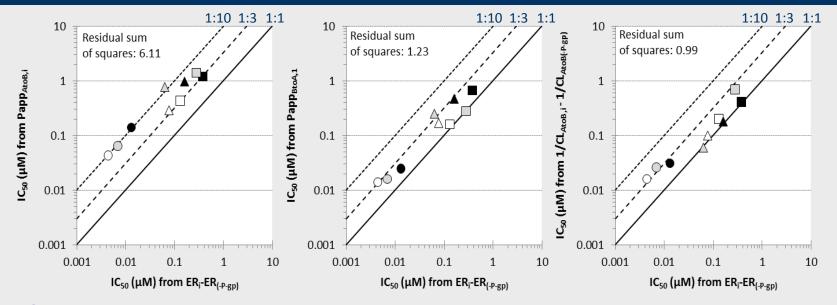

•
$$CL_{AtoB,i=\infty} + (CL_{AtoB,i=\infty} - CL_{AtoB,i=0}) \times \frac{1}{1+i/IC_{50}}$$


•
$$CL_{BtoA,i=\infty}$$
- $(CL_{BtoA,i=0}$ - $CL_{BtoA,i=\infty}$) $x = \frac{1}{1+i/IC_{50}}$

Model based approach

$$\mathsf{ER}_{\mathsf{i}} - \mathsf{ER}_{\mathsf{(-P-gp)}} = \frac{\mathsf{PS}_{\mathsf{4}} \mathsf{x} (\mathsf{PS}_{\mathsf{2}} + \mathsf{PS}_{\mathsf{P-gp,i}})}{\mathsf{PS}_{\mathsf{1}} \mathsf{x} \mathsf{PS}_{\mathsf{3}}} - \frac{\mathsf{PS}_{\mathsf{2}} \mathsf{x} \mathsf{PS}_{\mathsf{4}}}{\mathsf{PS}_{\mathsf{1}} \mathsf{x} \mathsf{PS}_{\mathsf{3}}} = \frac{\mathsf{PS}_{\mathsf{4}}}{\mathsf{PS}_{\mathsf{1}} \mathsf{x} \mathsf{PS}_{\mathsf{3}}} \times \mathsf{PS}_{\mathsf{p-gp,i=0}} \times \frac{1}{1 + \mathsf{i}/\mathsf{IC}_{\mathsf{50}}}$$

•
$$1/CL_{AtoBi}-1/CL_{AtoB(-P-gp)} = \frac{PS_3 + PS_2 + PS_{P-gp,i}}{PS_1 \times PS_3} - \frac{PS_2 \times PS_3}{PS_1 \times PS_3} = \frac{1}{PS_1 \times PS_3} \times PS_{P-gp,i=0} \times \frac{1}{1+i/IC_{50}}$$

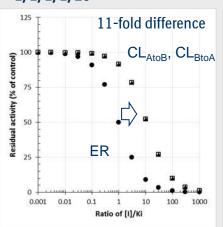


Experimental analysis

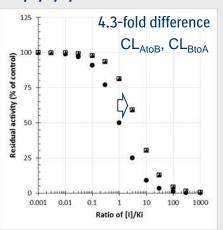
-Impact of IC₅₀ calculation method (2)-

zosuquidar
 quinidine
 Δ verapamil
 Closed: 50 μΜ
 Hatched: 100 μΜ

- AtoB vs ER: average 7-fold difference
- BtoA vs ER:average 2.3-fold difference
- ◆ 1/CL_{AtoB,i} −1/CL_{AtoB(-P-gp)} vs ER: average 1.5 fold difference
- Even if same data set were used for IC₅₀ calculation, IC₅₀ values were different among methods used.
- ➤ There is no substantial difference in IC₅₀ values between two different model based approaches


Experimental analysis

-Impact of IC₅₀ calculation method (3)-



	Model based equation	P-gp active (low inhibitor conc.) (AtoB: PS ₂ +PS ₃ < <ps<sub>Pgp) (BtoA: PS₂+PS_{Pgp}>>PS₃)</ps<sub>	P-gp inhibited (high inhibitor conc.) (AtoB: PS ₂ +PS ₃ >>PS _{Pgp}) (BtoA: PS ₂ +PS _{Pgp} < <ps<sub>3)</ps<sub>
CL _{AtoB}	$\frac{PS_1 + PS_3}{PS_3 + PS_2 + PS_{Pgp}}$	$\frac{PS_1 + PS_3}{PS_{Pgp}}$	$\frac{PS_1 + PS_3}{PS_3 + PS_2}$
CL_BtoA	$\frac{PS_4x (PS_2 + PS_{Pgp})}{PS_3 + PS_2 + PS_{Pgp}}$	PS ₄	$\frac{PS_{4}x (PS_{2}+PS_{Pgp})}{PS_{3}+PS_{2}+PS_{Pgp}}$
ER _i -ER _(-Pgp)	$\frac{PS_{4} x \; PS_{Pgp}}{PS_{1} x \; PS_{3}}$	$\frac{PS_4 x PS_{Pgp}}{PS_1 x PS_3}$	

PS₁/PS₂/PS₃/PS₄/PS_{P-gp} =1/1/5/1/20

- ✓ In case of CL_{AtoB} and CL_{BtoA}, there is a concentration range in which sensitivity against P-gp inhibitor is very low, resulting higher IC₅₀ values compared to those obtained by model-based approaches.
- ✓ The fold difference between model and empirical approaches depends on probe substrate (ratio of PS₁-PS_{Pgp}).

N. Ishiguro_CBI_June2014 6

Summary

- ☐ It is recently known that there is relatively big data variability in experimental data for efflux transporters such as P-gp and BCRP
- Experimental analysis
 - ☐ There is difference in IC₅₀ between empirical and model based approaches which would contribute at least partly inter-laboratory difference
 - Model-based approach such as our new approach $[1/CL_{AtoB,i}-1/CL_{AtoB(-P-gp)}]$ and ERi-ER(-P-gp) would be suitable for IC_{50} estimation from transcellular transport study, because the IC_{50} values from model-based approaches directly reflect the P-gp function.

N. Ishiguro_CBI_June2014