JSSX Award

Essential Roles of Transporters in Absorption and Disposition of Endo/Xenobiotics

輸送体を基盤とする薬物動態と生理機構に関する研究

Ikumi Tamai, Ph.D. Kanazawa University, Institute of Medical, Pharmaceutical and Health Sciences,

> 金沢大学医薬保健研究域薬学系 薬物動態学研究室 玉井郁巳

@Tokyo, 2013 October 10

Acknowledgements

• Teachers/Mentors :

Tsuji A (Kanazawa U) (Keio U)

Terasaki T. (Tohoku U)

Amidon GL. (U Michigan)

Deguchi Y. (Teikyo U)

Safa AR. (U Cicago/ Indiana)

•Colleagues:

Nakanishi T. (Kanazawa U)

Maeda T. (Iwate Med U)

Shirasaka Y. (U Washington)

Sai Y.

Kawahara M. (Kanazawa Muni Hosp)

Komori H. (Kanazawa U)

•Collaborators: Wakayama T. (Kanazawa U, Med) Nezu J. (Chugai Pharm) Kotegawa T. & Ohashi K. (Ohita U) Yokoi T. (Nagoya U) Nakajima M. (Kanazawa U, Pharm) Miyamato K. (Tokushima U) Ogihara T. (Takasaki U H. & W.) Kawai K. (Kanazawa U. Health) Okudaira H.

(Nihon Medi-Physics) Li Y. & Mackeage M. (Auckland U) Watanabe Y. (Riken) Takashima T. (Mochida Pharm) **Ishiguro N.**

(Boehringer Ingelheim) Anzai N. (Dokkyo Med U)

Acknowledgements: PhD., MS, and Undergraduate Studensts

• Former Students (Ph.D.) 1990'~:

Ohnishi T. (Daiichi Sankyo Co. Ltd.)	Iwanaga T. (FujiYakuhin Co. Ltd.)
Takanaga H. (Santen Pharm. Co. Ltd, USA)	Ishiguro N. (Boehringer Ingelheim)
Sakata A.	Fujita M. (Fuji Film)
Yabuuchi H. (Kobe U.)	Mitsuoka K. (Astellas Pharma Inc.)
Ohashi R. (Mitsubishi Tanabe Pharma Co.)	Sato M. (PMDA)
Uchino H. (Astellas Pharma Inc.)	Nakamura T. (Teijin Pharma Ltd.)
Kido Y. (Shionogi & Co. Ltd.)	Arakawa H. (Takasaki U Health & Welfare)
Kobayashi D. (Health Sci U Hokkaido)	Saheki A. (Nippon-Shinyaku Co. Ltd.)
Nozawa T. (Astellas Pharma Inc.)	Maeda H. (Kyowa Hakko Kirin Co. Ltd.)
Kato R. (Japan Tabacco Inc.)	Fukuda H. (Mitsubishi-Tanabe Pharma Co.)
Shima Y. (Ajinomoto Pharm. Co. Ltd.)	Lu, Yang

• Former Students (M.S.) 2002~

(Tokyo University of Science and Kanazawa University):

Goto A. Suzuki M. Hirayama M. Yotsumoto T. Hashino Y. Irokawa M. Takahashi K. Higashi R.	Oyabu M. Kikuchi A. Sato M. Nakamura T. Funabashi M. Furuichi K. Otake K. Sato T.	Nakakariya M. Mihayashi T. Yoshida K. Sekine K. Shibue Y. Suzuki K. Shimada (Kuraoka) E. Fukushi A.	Morohashi Y. Matsushita T. Shimada S. Haruta T. Ogawa T. Koyama S. Shichiri M. Fukuyama Y.	Yoshifuji M. Hasegawa Y. Mori T. Yanagihara C. Ikenaga M. Ohya K. Gose T.
Higashi R.	Sato T.	Fukushi A.	Fukuyama Y.	
Wakasawa T.	Shimada D.	Mamada H.	Hosomi A.	

Major Transporter-Related Research since 1982

1: Organic anion transporters (OATPs and MCTs):

1980'-: Hepatic disposition of drugs

1990'-: Intestinal absorption of drugs

2000'-: Hormone dependence of cancer cells

2010'-: Prostaglandins and pathophysiology.

2: Organic cation/carnitine transporters (OCTNs):

1997-: Finding of OCTN1 and OCTN2

1998-: Systemic carnitine deficiency

2000'-: Blood cell growth and differentiation

2000'-: Drug absorption and disposition (Lung, Kidney, Cancer etc.)

3: Peptide transporter (PEPT1):

1980'-: Intestinal absorption of β -lactam antibiotics

1990'-: PEPT1 and drug transport

2000'-: Oral and cancer delivery by PEPT1

4: Efflux transporters (MDR1)

1980'-: Cancer resistance

1990'-: P-gp as the blood-brain and intestinal-absorption barriers

5: Urate transporters (URAT1, GLUT9, BCRP)

2000'-: Drug-induced change of serum urate level 2010'-: Regulation mechanism and association with disease

Physicochemical and PK Properties of B-Lactam Antibiotics

Ph.D. Thesis: Membrane Transport Mechanisms for ß-Lactam Antibiotics in Intestine, Liver and Kidney

Transport studies by membrane physiological techniques, such as perfusion, tissues slices, isolated cells, membrane vesicles, *etc.*

Many suggestion of carrier-mediated transport in intestinal absorption, and urinary and biliary excretions.

Membrane Transport Mechanisms for ß-Lactam Antibiotics in Intestine, Liver and Kidney

Molecular identification of involved transporters and analysis of their *in vivo* contribution, species difference and alteration of PK by genetic polymorphisms and DDI

Expression Profiles of Human OATPs by RT-PCR

Tamai et al., Biochem. Biophys. Res. Commun., 27:251-260, 2000

Identification of OATP/Oatp Transporters Responsible for Hepatic Uptake of β -Lactams in Human and Rats

Urinary and Biliary Excretion Profiles of β-Lactam Antibiotics in Humans and Rats

		Human				Rat	
	M.W.	Dose	X _{bile}	X urine	Dose ^{a)}	X _{bile}	X _{urine}
		mg/kg	% of	Dose	mg/kg	% of	Dose
Cephalexin	347.4	250 ^{b)}		90.0	20	9.3	74.0
Cefadroxil	381.4	500-1000 ^b)		90.0	20	20.0	N.A.
Nafcillin	414.5	500 ^{b)}	96.0	4~38	10	89.2	N.A.
Cefazolin	454.5	250-500 ^{d)}		85.0	20	18.0	67.6
Cefotaxime	455.5	1000-2000 ^{c)}		65.0	20	1.0	N.A.
Cefmetazole	471.5	2000 ^{c)}		75.0	20	66.9	19.8
Cefditoren	506.6	200-400 ^{b)}		20.0		N.A.	
Cefsulodin	532.6	1000 b)		60.0		N.A.	
Ceftriaxone	554.6	2000 ^{c)}		50.0	20	61.8	32.0
Cefoperazone	645.7	1000-2000 ^{c)}		30.0	20	80.9	12.1
a) Intravenous admin b) Oral administration	c) Intrave d) Intram	nous adn uscular	ninistration	N.A.	: Not Av	ailable	

Urinary and Biliary Excretion Profiles of β-Lactam Antibiotics in Humans and Rats

Human					
X urine	Dose ^{a)}	X _{bile}	X urine		
Dose	mg/kg	% of (Dose		
90.0	20	9.3	74.0		
90.0	20	20.0	N.A.		
4~38	10	89.2	N.A.		
85.0	20	18.0	67.6		
ATPs	and Oa	atos:	N.A.		
Cefr 1: Kinotic Paramotors					
r (DA)	E) Anal	veie			
		yələ			
			32.0		
	20	00.5	12.1		
	tion	tion	tion		

a) Intravenous administrationb) Oral administration

c) Intravenous administration d) Intramuscular

Transporters Involved in Hepatic Uptake of Nafcillin in Human and Rat

Uptake of β-Lactam Antibiotics by *Xenopus* Oocytes Expressing OATPs/Oatps

β-Lactam	OATP-Mediated β -Lactam Uptake (nL/oocyte/120 min)					
Antibiotics	Human			Rat		
	1B1	1B3	2B1	1(1a1) 2(1a4) 4(1b2)		
Cephalexin	×	1.3	×	1.1 2.0 0.8		
Cefadroxil	×	2.0	×	0.3 1.5 0.3		
Cefazolin	0.1	3.1	N.D.	1.5 7.8 0.8		
Cefotaxime	0.2	0.2	N.D.	0.1 × ×		
Cefmetazole	×	2.8	×	2.2 15.5 3.6		
Ceditoren	10.2	3.3	N.D.	N.D. 2.6 N.D.		
Cefsulodin	0.4	0.1	N.D.	× 7.1 ×		
Ceftriaxone	×	1.4	N.D.	1.3 × 0.6		
Cefoperazone	48.4	48.4	×	1.1 4.7 ×		

 β -Lactam Antibiotics : 5 mM

× : Not Transported N.D. : Not Determined

Nakakariya M. et al., Drug Metab. Pharmacokinet., 23: 347-355 (2008)

Peptide Transporter PEPT1 Responsible for Intestinal Absorption of β -Lactam Antibiotics

Decreased Cefadroxil Concn in PepT1-knockout Mice

Smith DE. et al., Pharm. Res., 30:1017-1025 (2013) Apical Membrane Expression of PEPT1 Sai Y. et al., FEBS Lett., 392: 25-29 (1996)

Question in 1990's : Does pH-Dependent Transporter Contribute to Intestinal Absorption of Organic Anions such as Pravastatin?

Proton-cotransport of pravastatin across intestinal brush-border membrane.

Tamai I, Takanaga H, Maeda H, Ogihara T, Yoneda M, Tsuji A.

Pharm. Res. 12: 1727-1732 (1995).

Participation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acids.

Tamai I, Takanaga H, Maeda H, Sai Y, Ogihara T, Higashida H, Tsuji A.

Biochem. Biophys. Res. Commun., 214:482-489 (1995).

Intestinal brush-border membrane transport of monocarboxylic acids mediated by proton-coupledtransport and anion antiport mechanisms.

Tamai I, Takanaga H, Maeda H, Yabuuchi H, Sai Y, Suzuki Y, Tsuji A.

J. Pharm. Pharmacol., 49:108-112 (1997).

Although MCT1 (SLC16A1) transported anionic compounds such as benzoic acid, but not clinically used drugs.

Expression Profiles of Human OATPs by RT-PCR

Tamai et al., Biochem. Biophys. Res. Commun., 27:251-260, 2000

Inhibitory Effect of Fruit Juice (FJ) on OATP2B1

Substrate-Dependent Inhibiton by Naringin and Stimulation by Pogesterone on OATP2B1 Expressed in *Xenopus* Oocytes

Concentration Dependence of E3S Uptake by OATP2B1 Expressed in Oocytes

Drug Metab. Pharmacokinet., 27: 360-364 (2012)

Hypothesis:

Multiple Binding Sites/Pockets on OATP2B1 with Different Substrate/Modulator Sensitivity

Drug Metab. Pharmacokinet., 27: 360-364 (2012)

Tamai et al., Biochem. Biophys. Res. Commun., 27:251-260, 2000

Expression Profiles of Human OATPs by RT-PCR

Diverse Biological Activities of PGE₂

Major Transporter-Related Research since 1982

1: Organic anion transporters (OATPs and MCTs):

- 1980'-: Hepatic disposition
- 1990'-: Intestinal absorption
- 2000'-: Hormone dependence of cancer cells
- 2010'-: Prostaglandins and pathophysiology.

2: Organic cation/carnitine transporters (OCTNs):

- 1997-: Finding of OCTN1 and OCTN2
- 1998-: OCTNs and systemic carnitine deficiency
- 2000'-: OCTNs and drug delivery and disposition (Cancer, Lung etc.)

3: Peptide transporter (PEPT1):

1980'-: Intestinal absorption of b-lactam antibiotics

1990'-: PEPT1 and drug transport

2000'-: Oral and cancer delivery by PEPT1

4: Efflux transporters (MDR1)

1980'-: Cancer resistance 1990'-: P-gp as the blood-brain and intestinal-absorption barriers

5: Urate transporters (URAT1, GLUT9, BCRP)

2000'-: Drug-induced change of serum urate level 2010'-: Regulation mechanism of urate

Thank JSSX, because I got a lot of ---

- Help and encouragement from JSSX people.
- Information through Annual Meeting, WS & SC, and DMPK.
- Stimulation and encouragement by JSSX leadership.

2006-2009: Chair of JSSX Committee of International Affairs. Encouragement by Dr. Yuichi Sugiyama (Riken) to make relationship with researchers outside Japan. Organization of AP-ISSX and involvement in ISSX leadership.

Current Members: Kanazawa University Department of Membrane Transport and Biopharmaceutics