第19回日本薬物動態学会年会(金沢) 2004.11.18

薬物と血清蛋白質との相互作用に関する 分子機能的研究

熊本大学大学院医学薬学研究部 薬物動態制御学分野

小田切 優樹

Structure of Fluorescent Probes

Drug binding sites on HSA

G.Sudlow. et al: The characterization of two specific drug binding sites on human serum albumin. *Mol. Pharmacol.* **11**, 824-832. (1975)

Location of the ligand binding sites on HSA

Ketoprofen (KP) と Diazepam (DZ) の各変異体への結合

The sample solutions contained 5µM KP or DZ and 10µM wild type or mutant HSA in 67mM sodium phosphate buffer (pH7.4).

HSA変異体を利用した薬物結合部位予測

各種病態下での血清蛋白結合の変動とその要因

HSA bound uremic toxins

indoxyl sulfate

(IS) Ka = 9.1 x 10⁵ (Site II) 血中濃度;104.3 ± 49.4 (4.1 µM)

indoleacetic acid (IA)

Ka = 2.1 x 10⁵ (Site II) 血中濃度;26.3 ± 11.7 (1.45 μM)

Drug-uremic toxin-fatty acid interaction

Possible cascade displacement model in fatty acid-uremic toxin-drug system

AGE-albuminの体内動態特性

Structural Characteristics of AGP

Binding of UCN-01 to AGP

*Statistically significant compared with native AGP; p<0.01.

Cancer patients	Ligands	R	Ka (x 10 ⁶ M ⁻¹)
855~1660	UCN-01	ΟΗ (β)	288 ± 75
79.6~158	Staurosporine	н	11.3 ± 5.74
0.0407~0.102	UCN-02	ΟΗ (α)	1.48 ± 0.11
	Katsuki M et al (2004) Phar	m Res 21.1648	-1655

N-terminal amino acid sequence analysis by the Edman degradation method

Amino acid sequence of AGP

10	20	30
QIPLCANLVP	VPITNATLDQ	ITGKWFYIAS
40	FO	60
70	80	90
FLREYQTRQD	QCIYNTTYLN	VQRENGTISR
100	110	120
YVGGQEHFAH		
130	140	150
NWGLSVYADK	PETTKEQLGE	FYEALDCLRI
160	170	100
PKSDVVYTDW	KKDKCEPLEK	QHEKERKQEE
UCN-0	1	
GES GES		

PITC: phenylisothiocyanate PTH : phenylthiohydantoin

Photolabeling of wild type, W25A, W122A and W160A with [³H]UCN-01

*Statistically significant compared with wild type; p<0.01.

Type I and II docking model of UCN-01 and AGP

Hydrophobic amino acids are shown in green.

Kopecky et al Biochem Biophys Res Commun 300, 41-6 (2003).

Amino acid residues around Trp160 that interacts with UCN-01 exhibited in type II docking model

Electrostatic interaction

Hydrogen bonding

Fluorescence spectra of QR in the presence or serum protein

Quinaldine red (QR)

- HSA (2.0 x 10⁻⁶ M)
- —— AGP (0.5 x 10⁻⁶ M)
- AGP (1.0 x 10⁻⁶ M)
 - AGP (2.0 x 10⁻⁶ M)

Binding of QR (%) to serum protein

AGP	HSA	γ-globulin
(2mg/100ml)	(80mg/100ml)	(17mg/100ml)
23.0	3.4	1.2

Standard curves for measurement of AGP

Comparison of QR method and SRID method

	QR method	SRID method
Measuring time	Short (1hr)	Long (50hr)
Operating procedure	Simple	Complex
Detection range	5-500 mg/100ml	12-199 mg/100ml
Operation cost	Inexpensive	Expensive
Coefficient of variation	< 3%	< 10%

α-Helix Formation of AGP through Binding to Membrane

Trp (W25, W122, W160) Microenvironment of AGP in the Presence of PG-membrane

まとめ

結合部位のトポロジー解析

- ・分光学的手法
- ・構造活性相関解析
- ・光アフィニティラベル法
- ・部位特異的変異法
- ・ドッキングシュミレーション

病態時での蛋白結合

- ・蛋白質の量的変動
- ・蛋白質の質的変動
- (コンフォメーション変化,翻訳後修飾)
- ・内因性物質の蓄積
- (脂肪酸,尿毒症物質)

蛋白介在性組織取り込み

・生体膜との相互作用に伴う構造転移